Advertisement

Journal of Materials Science

, Volume 30, Issue 7, pp 1827–1831 | Cite as

Rapid formation of the high-Tc phase in (Bi,Pb)-Sr-Ca-Cu-O superconductor via the sol-gel method

  • S. R. Sheen
  • D. H. Chen
  • C. T. Chang
  • C. H. Kao
  • J. C. Huang
  • Y. C. Chou
  • Y. C. Hsieh
  • Y. H. Hsieh
  • M. K. Wu
  • H. S. W. Chang
Papers

Abstract

Bi-Pb-Sr-Ca-Cu-O powder was synthesized by the oxalate gel method. A sample with the composition of Bi1.7Pb0.4Sr1.6Ca2.4Cu3.6Oy was used in this study. After pyrolysis of the gel precursor at 500 °C for 5 h, the resulting powder was calcined at 850 °C for another 5 h. The black powder was pressed into pellets and sintered at 852 °C for 5 h. The high-Tc phase was formed more easily in the sample with excess calcium and copper than in the theoretical composition. (Bi,Pb)2Sr2Ca2Cu3Oy (above 90%) was prepared as above within a relatively short time. Characterization of (Bi,Pb)2Sr2Ca2Cu3Oy superconductor by X-ray diffraction, scanning electron microscopy, electron probe microanalysis, resistivity measurement and magnetic measurement, is reported.

Keywords

Polymer Copper Scanning Electron Microscopy Pyrolysis Oxalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano, Jpn J. Appl. Phys. 27 (1988) 1209.CrossRefGoogle Scholar
  2. 2.
    M. Takano, J. Takada, K. Oda, H. Kitaguchi, Y. Miura, Y. Ikeda. T. Tomii and H. Mazaki, ibid. 27 (1988) L1041.CrossRefGoogle Scholar
  3. 3.
    J. Fransaer, J. R. Roos, L. Delaey, O. Van Der Biest, O. Arkens and J. P. Celis, J. Appl. Phys. 65 (1988) 3277.CrossRefGoogle Scholar
  4. 4.
    Fueng-Ho Chen, Tseung-Yuen Tseng, J. Am. Ceram. Soc. 73 (1990) 889.CrossRefGoogle Scholar
  5. 5.
    Masanobu Awano, Keiko Kani, Yasumasa Takao and Hiroyoshi Takagi, Jpn. J. Appl. Phys. 30 (1991) L806.CrossRefGoogle Scholar
  6. 6.
    K. Song, H. Liu, S. Dou and C. Soreii, J. Am. Ceram. Soc. 73 (1990) 1771.CrossRefGoogle Scholar
  7. 7.
    H. S. W. Chang, S. R. Sheen, D. H. Chen, C. T. Chang, C. H. Kao, J. C. Huang, Y. C. Chou, Y. C. Hsieh, Y. H. Hsieh and M. K. Wu, Mater. Lett. 16 (1993) 342.CrossRefGoogle Scholar
  8. 8.
    F. K. Lotgerling, J. Inorg. Nucl. Chem. 70 (1959) 113.CrossRefGoogle Scholar
  9. 9.
    Xiaolin Wang, Hong Wang, Minhua Jiang, Shuxia Shang, Zhuo Wang, Shengming Dong and Wentao Yu, Phys. C. 182 (1991) 333.CrossRefGoogle Scholar
  10. 10.
    Tsuneyuki Kanai, Tomoichi Kamo and Shin-Pei Matsuda, Jpn J. Appl. Phys. 28 (1989) L2188.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. R. Sheen
    • 1
    • 4
  • D. H. Chen
    • 1
  • C. T. Chang
    • 1
  • C. H. Kao
    • 2
  • J. C. Huang
    • 2
  • Y. C. Chou
    • 2
  • Y. C. Hsieh
    • 2
  • Y. H. Hsieh
    • 2
  • M. K. Wu
    • 2
  • H. S. W. Chang
    • 3
  1. 1.Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Department of Materials Science CenterNational Tsing Hua UniversityHsinchuTaiwan
  3. 3.Department of ChemistrySoochow UniversityTaipeiTaiwan
  4. 4.Materials Science CentreNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations