Journal of Materials Science

, Volume 30, Issue 7, pp 1818–1826 | Cite as

Damage evolution of angle-ply SCS-6/Ti composites under static and fatigue loading

  • P. C. Wang
  • S. M. Jeng
  • H. P. Chiu
  • J. M. Yang


The effect of fibre orientation and laminate stacking sequence on the tensile and fatigue behaviour of SCS-6/Ti 15-3 composites were investigated. The laminates used in this study were: (90)6, (0/ ± 45)s, (0/90)s, and (90/ +-45)s. The initiation and progression of microstructural damage at various stress levels was thoroughly characterized. It was found that fatigue life at high applied stresses were controlled by fibre fracture; progressive damage involving fibre fracture, interfacial debonding and matrix cracking became dominant at low applied stresses. Observation of the damage mechanisms in the angle-ply laminates under cyclic loading suggests that increasing the fibre-matrix bonding strength may improve the load carrying capability and fatigue life of laminates containing off-axis plies.


Fatigue Bonding Strength Fatigue Life Applied Stress Cyclic Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. A. Lerch and J. F. Saltman, “Tensile Deformation Damage in SiC Reinforced Ti-15V-3Cr-3Al-3Sn,” NASA TM-103620 (NASA Lewis Research Center, Cleveland, OH, 1991).Google Scholar
  2. 2.
    W. S. Johnson, S. J. Lubowinski and A. L. Highsmit, “Thermal and Mechanical Behaviour of Metal Matrix and Ceramic Matrix Composites”, ASTM STP 1080, edit. by J. M. Kennedy, H. H. Moeller, and W. S. Johnson (American Society for Testing and Materials, Philadelphia, 1990) pp. 193–218.CrossRefGoogle Scholar
  3. 3.
    T. P. Gabb, J. Gayda and R. A. Mackay, J. Compos. Mater. 24 (1989) 667.CrossRefGoogle Scholar
  4. 4.
    S. M. Jeng, J.-M. Yang and C. J. Yang, Mater. Sci. Engng A 138 (1991) 169.CrossRefGoogle Scholar
  5. 5.
    S. M. Jeng, P. Alassoeur and J.-M. Yang, ibid. 148 (1991) 67.CrossRefGoogle Scholar
  6. 6.
    B. S. Majumdar and G. M. Newaz, “Composite Materials: Fatigue and Fracture” Vol. 3, ASTM STP 1110, Edt. by T. K. O'Brien (American Society for Testing and Materials, Philadelphia, 1991) pp. 732–752.CrossRefGoogle Scholar
  7. 7.
    S. Mall and B. Portner, J. Engng Mater. Technol. 114 (1991) 409.CrossRefGoogle Scholar
  8. 8.
    Y. Mikata and M. Taya, J. Comp. Mat. 19 (1985) 554.CrossRefGoogle Scholar
  9. 9.
    B. S. Majumdar and G. M. Newaz, “Inelastic Deformation of Metal Matrix Composites, Part I — Plasticity and Damage Mechanisms”, NASA CR-189095 (NASA Lewis Research Center, Cleveland, OH, 1992).Google Scholar
  10. 10.
    J.-M. Yang and S. T. Chen, Adv. Compos. Lett. 1 (1992) 27.CrossRefGoogle Scholar
  11. 11.
    W. S. Johnson, in “Metal Matrix Composites: Testing, Analysis and Failure Modes”, Edited by W. S. Johnson (American Society for Testing and Materials, Philadelphia, PA 1989) pp. 194–221.CrossRefGoogle Scholar
  12. 12.
    T. H. Bruce Nguyen, S. M. Jeng and J. M. Yang, Mater. Sci. Engng (1993).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. C. Wang
    • 1
  • S. M. Jeng
    • 1
  • H. P. Chiu
    • 1
  • J. M. Yang
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations