Journal of Materials Science

, Volume 30, Issue 7, pp 1811–1817 | Cite as

Kinetics of WC-Co oxidation accompanied by swelling

  • F. Lofaj
  • Yu. S. Kaganovskii


The oxidation behaviour of WC-Co sintered carbides with 3–5 μm grain size of WC and 6–15 vol.% of cobalt have been studied in air in the temperature range 650–800 °C. The intensive swelling of up to 350% of initial specimen size and linear kinetics of the growth of the porous WO3 layer were observed during the oxidation. The final shape of the specimen after oxidation was dependent on its initial shape. The apparent activation energy of the dimension and weight gain kinetics were within the range 32–67 kJ mol−1 and the process was proposed to be controlled by the reaction at the interface. The oxidation rates and swelling coefficients increased when the mean size of WC grains was decreased and cobalt content increased. The possible model of WC-Co alloys' oxidation and swelling was proposed for the observed shape development and kinetics of oxidation.


Oxidation Carbide Activation Energy Cobalt Weight Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. J. A. Brookes, “World Directory and Handbook of Hardmetals” (Int. Carbide Data, 4th edition, 1987).Google Scholar
  2. 2.
    J. Dusza, L'. Parilak, M. Šlesar and J. Diblifk, Ceram. Int. 9 (1983) 2.CrossRefGoogle Scholar
  3. 3.
    J. Dusza, L' Parilak and M. Šlesar, Ceram. Int. 13 (1987) 133.CrossRefGoogle Scholar
  4. 4.
    N. Tsuchiya, M. Fukuda, T. Nakai and H. Suzuki, J. Jap. Soc. Powder met. 6 (1991) 505.CrossRefGoogle Scholar
  5. 5.
    R. Kieffer, and F. Kolbl, Z. Anorg. Chem. 262 (1950) 97.CrossRefGoogle Scholar
  6. 6.
    G. V. Samsonov, “Tugoplavkije sojedinenija” (Metallurgizdat, Moskva, 1963).Google Scholar
  7. 7.
    R. F. Vojtovich and E. A. Pugach, Poroshkovaya Metallurgija (1973) 59.Google Scholar
  8. 8.
    R. F. Vojtovich and E. A. Pugach, “Okislenije tugoplavkich soedinenij” (Metallurgizdat, Moskva, 1978).Google Scholar
  9. 9.
    Yu. F. Kots, V. S. Panov, N. V. Shipkov and A. A. Filimonova, Poroshkovaya Metallurgija (1990) 62.Google Scholar
  10. 10.
    B. O. Haglund and B. Lehtinen, in “Proceedings of 3rd International Conference on Thermal Analysis” ICTA, Davos, Vol. 3 (1971) p. 545.Google Scholar
  11. 11.
    S. Shimada and M. Kozeki, J. Mat. Sci. 27 (1992) 1869.CrossRefGoogle Scholar
  12. 12.
    R. F. Vojtovich “Okislenie karbidov i nitridov” (Naukova dumka, Kiev, 1981).Google Scholar
  13. 13.
    G. S. Kreimer, in “Strength of Hard Alloys” (Consultant Bureau, Plenum Press, New York, 1968) in B. Johannesson, “The Fracture Behavior of Hardmetals”, PhD. Thesis (Chalmers University of Technology, Göteborg, 1987) p.7.Google Scholar
  14. 14.
    N. Bouaoaudja, G. Orange, G. Fantozzi, F. Thevenot and P. Goeuriot, J. de Physique 47 (1986) C1–739.CrossRefGoogle Scholar
  15. 15.
    E. A. Almond, in “Science of Hard Materials” edited by R. K. Wisandham, P. J. Rowcliffe and J. Gurland (Plenum Press, New York, 1983) p. 517.CrossRefGoogle Scholar
  16. 16.
    S. Lay, F. Osterstock, “Deformation of Ceramic Materials II.”, Mat. Sci. Res. 18 (Plenum Press, New York, 1984) p. 463.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • F. Lofaj
    • 1
  • Yu. S. Kaganovskii
    • 2
  1. 1.Institute of Materials Research SASKošiceSlovakia
  2. 2.Dept. of Crystal PhysicsKharkov State UniversityKharkovUkraine

Personalised recommendations