Advertisement

Journal of Materials Science

, Volume 30, Issue 7, pp 1801–1806 | Cite as

A comparative evaluation method of machinability for mica-based glass-ceramics

  • D. S. Baik
  • K. S. No
  • J. S. Chun
  • Y. J. Yoon
  • H. Y. Cho
Papers

Abstract

The machinability of mica glass-ceramics is evaluated using a tool dynamometer. Several samples with different chemical compositions and microstructures were tested in turning operations using TiCN cermet tools. The cutting rate dependence of specific cutting energy has been studied to find a simple method for the evaluation of machinability. The mechanical strength, the surface roughness of the machined surface and the fracture toughness were measured to support the machining behaviour. For the determination of machinability, the specific cutting energy at low cutting rate conditions, neglecting an elastic impact effect, and the slope of the log-log plot of the specific cutting energy versus cutting rate were considered as the reasonable parameters. These results are correlated with the microstructure and the hardness of the workpiece. In particular, the microhardness of the sample is shown to control the cutting characteristic.

Keywords

Microstructure Surface Roughness Fracture Toughness Mechanical Strength Rate Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Beall, United States Patent 3 689 293 (1972).Google Scholar
  2. 2.
    D. G. Grossman, United States Patent 3 839 055 (1974).Google Scholar
  3. 3.
    J. F. Bednarik and P. W. Richter, Glass Tech. 27 (1986) 2.Google Scholar
  4. 4.
    M. C. Shaw, “Metal Cutting Principles” (Clarendon Press, Oxford, 1984) p. 137.Google Scholar
  5. 5.
    K. Nihara, R. Morena and D. P. H. Hasselman, J. Mater. Sci. Letts. 1 (1982) 13.CrossRefGoogle Scholar
  6. 6.
    R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials” (Wiley, New York, 1976) p. 273.Google Scholar
  7. 7.
    L. Cervinka and J. Dusil, J. Non-Crystalline Solids 21 (1976) 125.CrossRefGoogle Scholar
  8. 8.
    S. Brunauer, P. Emmett and E. Teller, J. Am. Chem. Soc. 60 (1938) 309.CrossRefGoogle Scholar
  9. 9.
    P. J. Bryant, in Transactions of the Ninth National Vacuum Symposium. (Pergamon Press, London, 1962) p. 311.Google Scholar
  10. 10.
    B. v. Deryagin and M. S. Metsik, Soviet Phys. Solid State 1 (1959) 1393.Google Scholar
  11. 11.
    R. F. Giese, Jr, in “Micas”, Reviews in Mineralogy vol. 13, edited by S. W. Bailey (Mineralogical Society of America, 1984) p. 129.Google Scholar
  12. 12.
    K. T. Faber and A. G. Evans, Acta Metall. 31 (1983) 563.Google Scholar
  13. 13.
    S. M. Wiederhorn and B. J. Hockey, J. Mater. Sci. 18 (1983) 766.CrossRefGoogle Scholar
  14. 14.
    I. J. McColm, “Ceramic Hardness” (Plenum Press, New York, 1990) p. 189.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • D. S. Baik
    • 1
  • K. S. No
    • 1
  • J. S. Chun
    • 1
  • Y. J. Yoon
    • 2
  • H. Y. Cho
    • 3
  1. 1.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyTaejonKorea
  2. 2.Division of Electrical MaterialsKorea Electrotechnology Research InstituteChangwonKorea
  3. 3.Department of Precision Mechanical EngineeringChoongbuk National UniversityCheongjuKorea

Personalised recommendations