Journal of Materials Science

, Volume 30, Issue 7, pp 1781–1789 | Cite as

Matrix cracking with frictional bridging fibres in continuous fibre ceramic composites

  • C. H. Hsueh


Matrix cracking bridged by intact fibres, which debond from the matrix and then slip against the matrix in friction, has been analysed for unidirectional fibre-reinforced ceramic composites under tensile loading parallel to the fibre axis. The effect of bonding at the fibre-matrix interface, Poisson's effect of the fibre, and residual stresses were included in the analysis. Both the crack-opening displacement and the displacement of the composite due to interfacial debonding have been analytically related to the fibre bridging stress. The critical stress for matrix cracking was also analysed. The existing solutions can be recovered by considering a special case in the present generalized solution.


Polymer Residual Stress Generalize Solution Material Processing Critical Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Karnitz, D. F. Craig and S. L. Richlen, Ceram. Bull. 70 (1991) 430.Google Scholar
  2. 2.
    A. G. Evans and R. M. McMeeking, Acta Metall. 34 (1986) 2435.CrossRefGoogle Scholar
  3. 3.
    P. F. Becher, C. H. Hsueh, P. Angelini and T. N. Tiegs, J. Am. Ceram. Soc. 71 (1988) 1050.CrossRefGoogle Scholar
  4. 4.
    Y. Weitsman and H. Zhu, J. Mech. Phys. Solids 41 (1993) 351.CrossRefGoogle Scholar
  5. 5.
    P. Pluvinage and J. M. Quenisset, J. Compos. Mater. 27 (1993) 152.CrossRefGoogle Scholar
  6. 6.
    J. Kibler, in “Continuous Fiber Ceramic Composites Program Task 2”, edited by M. Harris, R. A. Lowden and M. A. Karnitz, Bimonthly Progress Report for June–July 1993.Google Scholar
  7. 7.
    J. Aveston, G. A. Cooper and A. Kelly, “The Properties of Fibre Composites”, Conference Proceedings, National Physical Laboratory, Guildford (IPC Science and Technology Press, 1971) pp. 15–26.Google Scholar
  8. 8.
    D. B. Marshall, B. N. Cox and A. G. Evans, Acta Metall. 33 (1985) 2013.CrossRefGoogle Scholar
  9. 9.
    A. Takaku and R. G. C. Arridge, J. Phys. D Appl. Phys. 6 (1973) 2038.CrossRefGoogle Scholar
  10. 10.
    H. Stang and S. P. Shah, J. Mater. Sci. 21 (1986) 953.CrossRefGoogle Scholar
  11. 11.
    L. N. McCartney, Proc. R. Soc. Lond. A425 (1989) 215.CrossRefGoogle Scholar
  12. 12.
    C. H. Hsueh, Acta Metall. Mater. 38 (1990) 403.CrossRefGoogle Scholar
  13. 13.
    Y. C. Gao, Y. W. Mai and B. Cotterell, J. Appl. Math. Phys. 39 (1988) 550.Google Scholar
  14. 14.
    J. W. Hutchinson and H. M. Jensen, Mech. Mater. 9 (1990) 139.CrossRefGoogle Scholar
  15. 15.
    C. H. Hsueh, Mater. Sci Eng. A145 (1991) 135.CrossRefGoogle Scholar
  16. 16.
    Idem, ibid. A145 (1991) 143.CrossRefGoogle Scholar
  17. 17.
    Idem, ibid. A161 (1993) L1.CrossRefGoogle Scholar
  18. 18.
    S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity” (McGraw-Hill, New York, 1951) p. 70.Google Scholar
  19. 19.
    R. Muki and E. Sternberg, Int. J. Solids Struct. 6 (1970) 69.CrossRefGoogle Scholar
  20. 20.
    C. H. Hsueh, J. Mater. Sci. Lett. 7 (1988) 497.CrossRefGoogle Scholar
  21. 21.
    J. K. Kim, C. Baillie and Y. W. Mai, J. Mater. Sci. 27 (1992) 3143.CrossRefGoogle Scholar
  22. 22.
    N. Shafry, D. G. Brandon and M. Terasaki, Euro-Ceram. 3 (1989) 3.453.Google Scholar
  23. 23.
    Y. Kagawa and K. Honda, Ceram. Eng. Sci. Proc. 12 (1991) 1127.CrossRefGoogle Scholar
  24. 24.
    B. Budiansky, J. W. Hutchinson and A. G. Evans, J. Mech. Phys. Solids 34 (1986) 167.CrossRefGoogle Scholar
  25. 25.
    P. G. Charalambides and A. G. Evans, J. Am. Ceram. Soc. 72 (1989) 746.CrossRefGoogle Scholar
  26. 26.
    C. H. Hsueh, Mater. Sci. Eng. A159 (1992) 65.CrossRefGoogle Scholar
  27. 27.
    J. D. Eshelby, Proc. R. Soc. A241 (1957) 376.Google Scholar

Copyright information

© US Government 1995

Authors and Affiliations

  • C. H. Hsueh
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations