Journal of Materials Science

, Volume 30, Issue 7, pp 1754–1759 | Cite as

Growth and structure of TiC coatings chemically vapour deposited on graphite substrates

  • S. Eroglu
  • B. Gallois


TiC coatings were grown on graphite substrates by the chemical vapour deposition technique, using gas mixtures of CH4-TiCl4-H2 at a total pressure of 10.7 kPa and at temperatures of 1400 and 1425 K. The growth rate and structure of the TiC coatings were investigated as a function of CH4 and H2 concentrations. The deposition rate of TiC increased with increasing CH4 flow rate, but did not change with H2 flow rate. This behaviour was explained by a mass transport theory. Thermodynamic analyses based on minimization of Gibbs' free energy predicted carbon codeposition with TiC. X-ray diffraction and Auger electron spectroscopy (AES) studies and microstructural observations, however, suggested that free carbon did not form. Textural analyses indicated that the growth of TiC coatings was initiated as randomly oriented crystallites, and as the thickness of the coatings increased, preferentially oriented columnar grains developed. The textures of TiC coatings with the same thickness changed from the 〈110〉 orientation to the 〈100〉 orientation with decreasing H2 flow rate for a constant CH4 flow rate. The CH4 concentration also greatly influenced the preferred orientation of the coatings.


Free Energy Chemical Vapour Deposition Auger Electron Spectroscopy Electron Spectroscopy Deposition Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kominsky, R. Nielsen and P. Zschack, J. Vac. Sci. Technol. 20 (1982) 1304.CrossRefGoogle Scholar
  2. 2.
    R. A. Langley, L. C. Emerson, J. B. Whitley and A. W. Mullendore, J. Nuclear Mater. 93&94 (1980) 479.CrossRefGoogle Scholar
  3. 3.
    J. Y. Rossignol, F. Langlais and R. Naslain, in “Proceedings of the Ninth International Conference on CVD”, edited by M. Robinson, C. H. J. van den Brekel, G. W. Cullen, J. M. Blocher Jr and P. Rai-Choudhury (Electrochemical Society, Pennington, PA, 1984) p. 596.Google Scholar
  4. 4.
    L. Aggour, E. Fitzer and J. Schlichtinhg, in “Proceedings of the Fifth International Conference on CVD”, edited by J. M. Blocher, Jr, G. E. Vuillard and G. Wahl (Electrochemical Society, Pennington, PA, 1981) p. 142.Google Scholar
  5. 5.
    M. Klein and B. M. Gallois, in “Chemical Vapor Deposition of Refractory Metals and Ceramics”, edited by T. M. Besmann and B. M. Gallois. Symposium Proceedings, Vol. 168, (Materials Research Society, Pittsburgh, PA, 1989) p. 93.Google Scholar
  6. 6.
    J. S. Paik, PhD thesis, Stevens Institute of Technology, Hoboken, NJ (1991).Google Scholar
  7. 7.
    T. M. Besmann, Report TM-5775, Oak Ridge National Laboratory, TN (1977).Google Scholar
  8. 8.
    D. R. Stull and H. Prophet, “JANAF Thermochemical Tables”, 2nd Edn, NSRDS-NBS 37 GPO, Washington, DC (1971).Google Scholar
  9. 9.
    S. Eroglu and B. Gallois, J. de Physique IV, 3(C3) (1993) 155.Google Scholar
  10. 10.
    C. S. Barret and T. B. Massalski, “Structure of Metals”, 3rd Edn (Pergamon Press, Oxford, 1980) p. 204.Google Scholar
  11. 11.
    Joint Committee on Powder Diffraction Standards, File No. 6-0614 (JCPDS Philadelphia, PA, 1967).Google Scholar
  12. 12.
    F. C. Eversteyn, P. J. W. Severin, C. H. J. van den Brekel and H. L. Peek, J. Electrochem. Soc. 117 (1970) 925.CrossRefGoogle Scholar
  13. 13.
    A. S. Grove, “Physics and Technology of Semiconductor Devices” (Wiley, New York, 1969) pp. 13–16.Google Scholar
  14. 14.
    S. Dushman, “Scientific Foundations of Vacuum Technique” (Wiley, New York, 1962) p. 77.Google Scholar
  15. 15.
    J. E. Sundgren, A. Rockett, J. E. Greene and U. Helmersson, J. Vac. Sci. Technol. A, 4 (1986) 2770.CrossRefGoogle Scholar
  16. 16.
    D. W. Kim, Y. J. Park, J. G. Lee and J. S. Chun, Thin Solid Films 165 (1988) 149.CrossRefGoogle Scholar
  17. 17.
    J. E. Sundgren, B. O. Johannsson and S. E. Karlsson, ibid. 105 (1983) 353.CrossRefGoogle Scholar
  18. 18.
    S. Komiya, N. Umezu and T. Narusawa, ibid. 54 (1978) 51.CrossRefGoogle Scholar
  19. 19.
    C. Jiang, T. Goto and T. Hirai, J. Mater. Sci. 25 (1990) 1086.CrossRefGoogle Scholar
  20. 20.
    A. van der Drift, Phillips Research Reports 22 (1967) 267.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. Eroglu
    • 1
  • B. Gallois
    • 1
  1. 1.Department of Materials Science and EngineeringStevens Institute of TechnologyHobokenUSA

Personalised recommendations