Advertisement

Journal of Materials Science

, Volume 30, Issue 7, pp 1742–1749 | Cite as

Fibre-on-plate experiments: relaxation and surface tension

  • G. de With
  • A. J. Corbijn
Papers

Abstract

The relaxation of the fibre-on-plate geometry was studied experimentally using glass. Various fibre diameters and temperature/time schedules were used. Excellent agreement with the theoretical predictions of Hopper was obtained. The determination of the surface tension of glass at low temperature by this method is discussed. A value of 0.19 N m−1 at 600 °C was measured for a modified Na-K-Ba-Sr-silica glass, which differs significantly from the sessile-drop value of 0.35 N m−1, extrapolated from high-temperature data. Influencing factors are discussed. The difference is probably due to the presence of water vapour which considerably lowers the surface tension of glass at low temperature.

Keywords

Polymer Surface Tension Water Vapour Theoretical Prediction Excellent Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Hopper, J. Fluid Mech. 243 (1992) 171.CrossRefGoogle Scholar
  2. 2.
    H. K. Kuiken, Coll. Surf. 59 (1991) 129.CrossRefGoogle Scholar
  3. 3.
    S. B. G. M. O'Brien, J. Adhes. Sci. Technol. 6 (1992) 1037.CrossRefGoogle Scholar
  4. 4.
    M. Abromowitz and I. A. Stegun, “Handbook of Mathematical Functions” (Dover, New York, 1972).Google Scholar
  5. 5.
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, “Numerical Recipes in Pascal” (Cambridge University Press, Cambridge, 1990).Google Scholar
  6. 6.
    D. M. Korwin, S. R. Lange, W. C. Eaton, I. Joseph and L. D. Pye, in “Proceedings of 16th Sut. Congress on Glass 9”, Madrid edited by A. Durán and J. M. F. Navaro, Vol. 2, (Sut. Com. Glass, Madrid, 1992) p. 253.Google Scholar
  7. 7.
    D. M. Korwin, W. C. Eaton and L. D. Pye, J. Am. Ceram. Soc. submitted.Google Scholar
  8. 8.
    H. B. B. Van Dam, personal communication (1993).Google Scholar
  9. 9.
    H. Scholze, “Glas: Natur, Struktur und Eigenschaften”, 2nd Edn (Springer, Berlin, 1977).CrossRefGoogle Scholar
  10. 10.
    G. W. Scherer, “Relaxation in Glass and Composites” (Wiley, New York, 1986).Google Scholar
  11. 11.
    J. v. d. Brink, personal communication (1993).Google Scholar
  12. 12.
    G. W. Morey, “The Properties of Glass” (Reinhold, NewYork, 1954).Google Scholar
  13. 13.
    A. Bondi, Chem. Rev. 52 (1953) 417.CrossRefGoogle Scholar
  14. 14.
    J. R. Green and D. Margerison, “Statistical Treatment of Experimental Data” (Elsevier, Amsterdam, 1978).Google Scholar
  15. 15.
    R. K. Iler, “The Chemistry of Silica” (Wiley, New York, 1975) p. 645.Google Scholar
  16. 16.
    R. J. Huang, T. Demirel and T. D. McGee, J. Am. Ceram. Soc. 56 (1973) 87.CrossRefGoogle Scholar
  17. 17.
    N. M. Parikh, ibid. 41 (1958) 18.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • G. de With
    • 1
    • 2
  • A. J. Corbijn
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands
  2. 2.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations