Journal of Materials Science

, Volume 30, Issue 7, pp 1715–1718 | Cite as

Fatigue behaviour of glass bead filled epoxy

  • H. Sautereau
  • A. Maazouz
  • J. F. Gerard
  • J. P. Trotignon


There is a relatively abundant literature on the mechanical properties of particle filled thermosets. Detailed experimental data are available on the effect of variables, such as the filler volume fraction, its surface treatment or shape factor, on the usual properties. In the case of epoxy matrix composites, data have been published on elastic properties. Kinetic studies on thermoplastics, as well as microscopic investigations clearly show that each particle acts as a crack initiation site. The present study deals with thermoset epoxy-glass bead composites. A noticeable advantage of the sphericity of the glass beads over the previously studied mineral fillers is that theoretical calculations, for instance of interparticle average distance, are easier. Some results are reported concerning the eventual role of the geometrical characteristics, including particle diameter, number of particles per volume unit, particle-matrix contact area, interparticle distance, on the fatigue characteristics of the composite as assessed from Paris or Wöhler plots. In addition, quasi-static crack propagation characteristics will be compared with dynamic ones. It is clearly shown that glass beads improved the fatigue crack propagation. Despite this fact, it is also shown that even a small amount of mineral filler, acting as crack initiator, can considerably reduce the fatigue life of epoxy composites.


Fatigue Fatigue Crack Fatigue Life Crack Initiation Glass Bead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Young, in “Structural Adhesives”, edited by A. J. Kinloch (Elsevier, New York, 1986) p. 163,Google Scholar
  2. 2.
    A. C. Moloney, H. H. Kausch and H. R. Stieger, J. Mater. Sci. 19 (1984) 1125.CrossRefGoogle Scholar
  3. 3.
    A. C. Roulin-Moloney, W. J. Cantwell and H. H. Kausch, Polym. Comp. 8 (1987) 314.CrossRefGoogle Scholar
  4. 4.
    L. J. Broutman and S. Sahu, Mater. Sci. Engng 8 (1971) 98.CrossRefGoogle Scholar
  5. 5.
    S. Sahu and L. J. Broutman, Polym. Engng Sci. 12 (1972) 91.CrossRefGoogle Scholar
  6. 6.
    J. Spanoudakis and R. J. Young, J. Mater. Sci. 19 (1984) 473.Google Scholar
  7. 7.
    Idem, ibid. 19 (1984) 487.CrossRefGoogle Scholar
  8. 8.
    J. A. Manson, R. W. Hertzberg, G. M. Connelly and J. F. Hwang, in “Multicomponent Materials” (American Chemical Society, 1986) pp. 291–312.Google Scholar
  9. 9.
    J. F. Hwang, J. A. Manson, R. W. Hertzberg, G. A. Miller and L. H. Sperling, Polym. Engng Sci. 29 (1989) 1477.CrossRefGoogle Scholar
  10. 10.
    J. Karger-Kocsis and K. Friedrich, Colloid Polym. Sci. 270 (1992) 1723.CrossRefGoogle Scholar
  11. 11.
    Idem Composites Sci. & Technol 48 (1993) 263.CrossRefGoogle Scholar
  12. 12.
    J. P. Trotignon, L. Demdoum and J. Verdu, Composites 23 (1992) 313.CrossRefGoogle Scholar
  13. 13.
    Idem, ibid. 23 (1992) 319.CrossRefGoogle Scholar
  14. 14.
    N. Amdouni, H. Sautereau and J. F. Gérard, J. Appl. Polym. Sci. 45 (1992) 1799.CrossRefGoogle Scholar
  15. 15.
    Idem, ibid. 46 (1992) 1723.CrossRefGoogle Scholar
  16. 16.
    R. J. Young and P. W. R. Beaumont, J. Mater. Sci. 11 (1971) 194.Google Scholar
  17. 17.
    R. Gauvin and J. P. Trotignon, J. Testing & Eval. ASTM 6(1) (1978).Google Scholar
  18. 18.
    J. G. Williams and M. J. Cawood, Polym. Testing 9 (1990) 15.CrossRefGoogle Scholar
  19. 19.
    A. J. Kinloch and R. J. Young, in “Fracture Behaviour of Polymers” (Applied Science, London, 1983).Google Scholar
  20. 20.
    A. C. Roulin-Moloney, in “Fractography and Failure Mechanism of Polymers and Composites” (Elsevier Applied Science, London, 1989).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • H. Sautereau
    • 1
  • A. Maazouz
    • 1
  • J. F. Gerard
    • 1
  • J. P. Trotignon
    • 2
  1. 1.Laboratoire des Matériaux MacromoléculairesURA CNRS, N∘ 507, INSALyonFrance
  2. 2.Département MatériauxENSAMParisFrance

Personalised recommendations