Advertisement

Journal of Materials Science

, Volume 30, Issue 7, pp 1689–1697 | Cite as

Modelling the properties of rubber-modified epoxy polymers

  • F. J. Guild
  • A. J. Kinloch
Papers

Abstract

A finite-element model for rubber particles in a polymeric matrix has recently been proposed which is based upon a collection of spheres, each consisting of a sphere of rubber surrounded by an annulus of matrix. We have used this model to investigate in detail the stress distributions in and around a rubber particle, or a void, in a matrix of epoxy polymer. We have deduced the bulk modulus of the rubber-toughened epoxy and considered the implications of the stress distributions on the observed toughening micromechanisms. Of particular concern has been the effects of the volume fraction and the properties of the rubber phase.

Keywords

Polymer Epoxy Rubber Polymeric Matrix Stress Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Kinloch, in “Rubber-toughened plastics”, edited by C. K. Riew (Advances in Chemistry Series 222, American Chemical Society, Washington DC, 1989) p. 67.Google Scholar
  2. 2.
    A. J. Kinloch, S. J. Shaw and D. L. Hunston, Polymer 24 (1983) 1355.CrossRefGoogle Scholar
  3. 3.
    A. F. Yee and R. A. Pearson, J. Mater. Sci. 21 (1986) 2462.CrossRefGoogle Scholar
  4. 4.
    R. A. Pearson and A. F. Yee, ibid 21 (1986) 2475.CrossRefGoogle Scholar
  5. 5.
    Y. Huang and A. J. Kinloch, ibid 27 (1992) 2753.CrossRefGoogle Scholar
  6. 6.
    Idem, ibid 27 (1992) 2763.CrossRefGoogle Scholar
  7. 7.
    Idem, 33 (1992) 1330.Google Scholar
  8. 8.
    L. J. Broutman and G. Panizza, Int. J. Polym. Mat. 1 (1971) 95.CrossRefGoogle Scholar
  9. 9.
    B. D. Agarwal and L. J. Broutman, Fibre Sci. Tech. 7 (1974) 63.CrossRefGoogle Scholar
  10. 10.
    P. J. Davy and F. J. Guild, Proc. Royal Soc., A148 (1988) 95.CrossRefGoogle Scholar
  11. 11.
    F. J. Guild and R. J. Young, J. Mater. Sci. 24 (1989) 2454.CrossRefGoogle Scholar
  12. 12.
    F. J. Guild, R. J. Young and P. A. Lovell, J. Mater. Sci. Letters 13 (1994) 10.CrossRefGoogle Scholar
  13. 13.
    F. J. Guild and A. J. Kinloch, ibid 13 (1994) 629.CrossRefGoogle Scholar
  14. 14.
    A. J. Kinloch and R. J. Young, “Fracture behaviour of polymers” (Applied Science Publishers Ltd, London, 1983).Google Scholar
  15. 15.
    S. C. Kunz and P. W. R. Beaumont, J. Mater. Sci. 16 (1981) 3141.CrossRefGoogle Scholar
  16. 16.
    Y. Huang and A. J. Kinloch, J. Mater. Sci. Letters, 11 (1992) 484.CrossRefGoogle Scholar
  17. 17.
    J. Brandrup and E. H. Immergut, Eds, “Polymer handbook”, Vols 8 and 9 (John Wiley, New York, 1989).Google Scholar
  18. 18.
    F. J. Guild and A. J. Kinloch, to be published.Google Scholar
  19. 19.
    A. F. Yee and R. A. Pearson, NASA Contractor Report 3852, 1984, NASA Langley, VA, USA.Google Scholar
  20. 20.
    Y. Huang and A. J. Kinloch, Polymer 33 (1992) 5338.CrossRefGoogle Scholar
  21. 21.
    D. S. Parker, H. J. Sue, J. Huang and A. F. Yee, ibid 31 (1990) 2267.CrossRefGoogle Scholar
  22. 22.
    A. F. Yee, Dongming Li and Xiaowei Li, J. Mater. Sci. 28 (1993) 6392CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • F. J. Guild
    • 1
  • A. J. Kinloch
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of SurreyGuildfordUK
  2. 2.Department of Mechanical EngineeringImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations