Advertisement

Journal of Materials Science

, Volume 30, Issue 7, pp 1671–1678 | Cite as

A study of the pozzolanic reaction by solid-state 29Si nuclear magnetic resonance using selective isotopic enrichment

  • A. R. Brough
  • C. M. Dobson
  • I. G. Richardson
  • G. W. Groves
Papers

Abstract

The hydration of a mixture of tricalcium silicate and silica has been studied by 29Si solid-state nuclear magnetic resonance, using selective enrichment of the reactants with 29Si in order to follow and compare the behaviour of the silicon nuclei originating from either source. This approach shows for the first time that the silicon atoms from the two components are not equilibrated throughout the hydration products but are preferentially located in distinct species. In particular, from the distinctive spectra observed when the silica only is enriched, it is concluded that the part of the calcium silicate hydrate gel formed which incorporates silicon from this source has a longer chain length and a slightly better-ordered structure than the remainder. The spectra obtained with selective enrichment are interpreted in terms of a model based on a dreierkette chain structure for C-S-H.

Keywords

Silicate Nuclear Magnetic Resonance Silicon Atom Calcium Silicate Hydration Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Dobson, D. G. C. Goberdhan, J. D. F. Ramsay and S. A. Rodger, J. Mater. Sci. 23 (1988) 4108.CrossRefGoogle Scholar
  2. 2.
    J. Hjorth, J. Skibsted and H. J. Jakobsen, Cem. Conc. Res. 18 (1988) 789.CrossRefGoogle Scholar
  3. 3.
    S. S. Beedle, G. W. Groves and S. A. Rodger, Adv. Cem. Res. 2 (1989) 3.CrossRefGoogle Scholar
  4. 4.
    G. W. Groves and S. A. Rodger, ibid. 2 (1989) 135.CrossRefGoogle Scholar
  5. 5.
    H. Justnes, I. Meland, J. O. Bjoergum and J. Krane, ibid. 3 (1990) 111.CrossRefGoogle Scholar
  6. 6.
    S. A. Rodger, G. W. Groves, N. J. Clayden and C. M. Dobson, J. Am. Ceram. Soc. 71 (1988) 91.CrossRefGoogle Scholar
  7. 7.
    A. R. Brough. C. M. Dobson, I. G. Richardson and G. W. Groves, ibid. 77 (1994) 593.CrossRefGoogle Scholar
  8. 8.
    H. F. W. Taylor, “Cement Chemistry” (Academic Press, London, 1990) pp. 142–52.Google Scholar
  9. 9.
    H. F. W. Taylor, J. Am. Ceram. Soc. 69 (1986) 464.CrossRefGoogle Scholar
  10. 10.
    I. G. Richardson and G. W. Groves, Cem. Conc. Res. 22 (1992) 1001.CrossRefGoogle Scholar
  11. 11.
    X. Cong and R. J. Kirkpatrick, private communication (1994).Google Scholar
  12. 12.
    S. A. Hamid, Z. Krist. 154 (1981) 189.Google Scholar
  13. 13.
    A. R. Brough, DPhil. thesis, University of Oxford, UK (1993).Google Scholar
  14. 14.
    G. M. M. Bell, J. Bensted, F. P. Glasser, E. E. Lachowski, D. R. Roberts and M. J. Taylor, Adv. Cem. Res. 3 (1990) 23.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. R. Brough
    • 1
  • C. M. Dobson
    • 1
  • I. G. Richardson
    • 1
    • 2
  • G. W. Groves
    • 2
  1. 1.Inorganic Chemistry LaboratoryUniversity of OxfordOxfordUK
  2. 2.Centre for Advanced Cement Based MaterialsUniversity of Illinois at Urbana ChampaignUrbanaUSA

Personalised recommendations