Advertisement

Journal of Materials Science

, Volume 30, Issue 7, pp 1653–1660 | Cite as

Microstructural investigation of a rapidly solidified Ti-6Al-4V-1B-0.5Y alloy

  • Z. Fan
  • A. P. Miodownik
  • L. Chandrasekaran
  • C. M. Ward-Close
Papers

Abstract

A Ti-6Al-4V-1B-0.5Y (wt%) alloy has been prepared by consolidation of the melt-spun alloy fibres. The microstructures of the melt-spun fibre and the consolidated alloy were examined by different techniques. It was found that in the consolidated alloy, titanium boride and yttrium oxide particles have a refined particle size and a uniform distribution in the α(+β) matrix compared with the microstructure of the same alloy obtained by conventional ingot metallurgy. The boride phase in the consolidated alloy mainly has a needle-shaped morphology and has been identified by electron diffraction to be orthorhombic TiB with a B27 structure, while the yttrium oxide has a cuboidal morphology and has been identified as bcc Y2O3. Detailed TEM examination also revealed that yttrium addition has a strong influence on the TiB morphology by comparing the microstructures of Ti-6Al-4V-1B alloys with and without yttrium addition. Under similar processing conditions, the TiB phase in the consolidated alloys without yttrium addition mainly has a nearly equiaxed morphology with a finer particle size, while the TiB phase in the consolidated alloy with yttrium addition will mainly have a needle-shaped morphology. This effect of yttrium addition on the TiB morphology has been discussed in terms of heterogeneous nucleation and the reduced undercooling.

Keywords

Boride Yttrium Oxide Boride Phase Ingot Metallurgy Titanium Boride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Jackson, J. Moteff and H. F. Froes, in “Powder Metallurgy of Titanium Alloys”, edited by F. H. Froes and J. E. Smugeresky (TMS-AIME, Warrendale, PA, 1980) p. 303.Google Scholar
  2. 2.
    C. Suryanarayana and F. H. Froes, Int. Metall. Rev. 36 (1991) 85.CrossRefGoogle Scholar
  3. 3.
    J. L. Murray (ed.), “Phase Diagrams of Binary Titanium Alloys”, (ASM International, Metals Park, OH, 1987) p. 33.Google Scholar
  4. 4.
    S. H. Whang, J. Mater. Sci. 21 (1986) 2224.CrossRefGoogle Scholar
  5. 5.
    S. H. Whang and C. S. Shi, in “Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties”, Materials Research Society Symposia Vol. 58, edited by B. C. Giessen, D. E. Polk and A. I. Taub (MRS, Boston, MA, 1986) p. 353.Google Scholar
  6. 6.
    B. B. Rath, B. A. MacDonald, S. M. L. Sastry, R. J. Lederich, J. E. O'Neal and C. R. Whitsett, in “Titanium '80: Science and Technology”, Vol. 2, edited by. H. Kimura and O. Izumi, (The Metallurgical Society AIME, Warrendale, PA, 1980). p 1185.Google Scholar
  7. 7.
    D. G. Konitzer, B. C. Muddle and H. L. Fraser, Metall. Trans. 14A (1983) 1979.CrossRefGoogle Scholar
  8. 8.
    Z. Fan, A. P. Miodownik, L. Chandrasekaran and M. Ward-Close, J. Mater. Sci. 29 (1994) 1127.CrossRefGoogle Scholar
  9. 9.
    R. G. Rowe, T. F. Broderick, E. F. Koch and F. H. Froes, in “Titanium-Rapid Solidification Technology”, edited by F. H. Froes and D. Eylon, (The Metallurgical Society AIME, Warrendale, PA, 1986) p. 131.Google Scholar
  10. 10.
    Z. Fan, PhD thesis, University of Surrey, Guildford, UK (1993).Google Scholar
  11. 11.
    E. E. Shpil'rain, D. N. Kagan, L. S. Barkhatov, L. I. Zhmakin and V. V. Koroleva, High Temp. High Press. 11 (1979) 539.Google Scholar
  12. 12.
    R. G. Fenish, NRM 138 (1964), PP.1–37.Google Scholar
  13. 13.
    O. N. Carlson, Bull. Alloy Phase Diagr. 11 (1990) 61.CrossRefGoogle Scholar
  14. 14.
    R. G. Rowe, E. F. Koch, T. F. Broderick and F. H. Froes, in “Rapidly Solidified Materials”, edited by P. W. Lee and R. S. Carbonara, (ASM, Metals Park OH, 1986) p. 107.Google Scholar
  15. 15.
    Y. Z. Lu and B. C. Giessen, Mater. Sci. Eng. 98 (1988) 179.CrossRefGoogle Scholar
  16. 16.
    T. Kainuma and Y. Kawabe, in “Proceedings of the 6th World Conference on Titanium”, Part II, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 849.Google Scholar
  17. 17.
    Y. T. Lee, G. Wirth, T. F. Broderick and F. H. Froes, ibid.“, p. 837Google Scholar
  18. 18.
    B. F. Decker and J. S. Kasper, Acta Crystalogr. 7 (1954) 77.CrossRefGoogle Scholar
  19. 19.
    M. E. Hyman, C. McCullough, J. J. Vallencia, C. G. Levi and R. Mehrabian, Metall. Trans. 20A (1989) 1847.CrossRefGoogle Scholar
  20. 20.
    Y. Z. Lu, B. C. Giessen and S. H. Whang, in “Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties”, Materials Research Society Symposia, Vol. 58, edited by B. C. Giessen, D. E. Polk and A. I. Taub (MRS, Boston, MA 1986) p. 377.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Z. Fan
    • 1
  • A. P. Miodownik
    • 2
  • L. Chandrasekaran
    • 3
  • C. M. Ward-Close
    • 3
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK
  2. 2.Department of Materials Science and EngineeringUniversity of SurreyGuildfordUK
  3. 3.Materials and Structures DepartmentDefence Research AgencyFarnboroughUK

Personalised recommendations