Journal of Materials Science

, Volume 30, Issue 7, pp 1642–1652 | Cite as

Compressive strength of a rigid-rod polymer fibre embedded in an isotropic matrix

  • R. Hentschke
  • M. J. Kotelyanskii


The results are presented of an approximate elastic stability analysis for an anisotropic polymer fibre under compressive stress, which is embedded in an isotropic elastic matrix. This case, which thus far has not been treated properly, corresponds most closely to the experiments, which yield the best quantitative measurements of the compressive strength of high-modulus polymer fibres. Within the limits of a weak matrix, i.e. the shear modulus of the matrix is small compared to the shear modulus of the fibre, a simple analytical formula has been obtained for the compressive strength of the fibre in terms of its longitudinal Young's modulus, and the Poisson's ratio and shear modulus of the matrix. On the other hand, for a strong matrix the compressive strength of the fibre is solely determined by its shear modulus. For the intermediate regime, a simple but highly accurate interpolating expression has been constructed.


Compressive Strength Shear Modulus Stability Analysis Compressive Stress Analytical Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Jiang, W. W. Adams and R. K. Eby, in “Material Science and Technology,” Vol. 12, edited by R. W. Cahn, P. Haasen and E. J. Kramer (VCH, New York, 1993) p. 597.Google Scholar
  2. 2.
    W. W. Adams, R. K. Eby and D. E. McLemore (eds) “The material science and engineering of rigid-rod polymers”, Vol. 134 (MRS, Pittsburgh, PA, 1989).Google Scholar
  3. 3.
    W. Sweeny, J. Polym. Sci. A Polym. Chem. 30 (1992) 1111.CrossRefGoogle Scholar
  4. 4.
    S. J. Deteresa, R. S. Porter and R. J. Farris, J. Mater. Sci. 20 (1985) 1645.CrossRefGoogle Scholar
  5. 5.
    S. S. Abramchuk and V. D. Protasov, Mech. Compos. Mater. 23 (1987) 1.CrossRefGoogle Scholar
  6. 6.
    S. G. Wierschke, Mater. Res. Symp. Proc. 134 (1989) 313.CrossRefGoogle Scholar
  7. 7.
    S. V. D. Zwaag, S. J. Picken and C. P. V. Sluijs, in “Integration of fundamental polymer science and technology”, Vol. 3, edited by P. J. Lemstra and L. A. Kleintjens (Elsevier Applied Science, London, 1989) p. 199.Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, “Theory of elasticity” (Pergamon Press, London, 1970).Google Scholar
  9. 9.
    S. P. Timoshenko and J. M. Gere, “Theory of elastic stability” (McGraw-Hill, London, 1988).Google Scholar
  10. 10.
    S. J. Deteresa, S. R. Allen, R. J. Farris and R. S. Porter, J. Mater. Sci. 19 (1984) 57.CrossRefGoogle Scholar
  11. 11.
    S. V. D. Zwaag and G. Kampschoer, in “Integration of Fundamental Polymer Science and Technology”, Vol. 2, edited by P. J. Lemstra and L. A. Kleintjens (Elsevier Applied Science, London, 1988) p. 545.CrossRefGoogle Scholar
  12. 12.
    S. J. Deteresa and R. J. Farris, Mater. Res Soc. Symp. Proc. 134 (1989) 375.CrossRefGoogle Scholar
  13. 13.
    S. Kumar and T. E. Helminiak, ibid. 134 (1989) 363.CrossRefGoogle Scholar
  14. 14.
    S. A. Fawaz, A. N. Palazotto and C. S. Wang, ibid. 134 (1989) 381.CrossRefGoogle Scholar
  15. 15.
    F. J. McGarry and J. E. Moalli, Polymer 32 (1991) 1816.CrossRefGoogle Scholar
  16. 16.
    Idem, ibid. 32 (1991) 1811.CrossRefGoogle Scholar
  17. 17.
    M. G. Dobb, D. J. Johnson and B. P. Saville, ibid. 22 (1981) 960.CrossRefGoogle Scholar
  18. 18.
    S. J. Deteresa, R. S. Porter and R. J. Farris, J. Mater. Sci. 23 (1988) 1886.CrossRefGoogle Scholar
  19. 19.
    B. W. Rosen, J. Am. Inst. Aero. Astron. 2 (1964) 198.Google Scholar
  20. 20.
    “Mathematica”, Vers. 2.2., Wolfram Research (1993).Google Scholar
  21. 21.
    S. J. Deteresa, R. S. Porter and R. J. Farris, in “Composite systems from natural and synthetic polymers”, edited by L. Slmén, A. deRuvo, J. C. Seferis and E. B. Stark (Elsevier Science, Amsterdam, 1986) p. 141.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. Hentschke
    • 1
  • M. J. Kotelyanskii
    • 1
  1. 1.Max-Planck-Institut für PolymerforschungMainzGermany

Personalised recommendations