Advertisement

Journal of Materials Science

, Volume 30, Issue 7, pp 1627–1641 | Cite as

Electrical properties of high-temperature oxides, borides, carbides, and nitrides

  • C. C. Wang
  • S. A. Akbar
  • W. Chen
  • V. D. Patton
Review

Abstract

High-temperature materials including oxides, borides, carbides, and nitrides encompass all types of conductors: metallic, semiconducting, and ionic. Their electrical conductivities are generally very sensitive to impurities regardless of the type of conductor. For large band-gap materials, which includes most of the oxides, the conductivities at low temperatures are frequently dominated by impurities or dopants, and intrinsic conduction only becomes significant above a temperature which depends largely on the level of dopant, the band gap and the defect structure of the base material. The borides, carbides, and nitrides of transition metals are metallic conductors with conductivities and temperature coefficients of resistivity comparable to that of their parent metals.

Keywords

Oxide Polymer Carbide Electrical Conductivity Nitrides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Fagan and V. W. Amarakoon, Am. Ceram. Soc. Bull. 72 (1993) 70.Google Scholar
  2. 2.
    Idem, ibid. 72 (1993) 69.Google Scholar
  3. 3.
    L. E. Toth, “Transition Metal Carbides and Nitrides” (Academic Press, New York, 1971).Google Scholar
  4. 4.
    H. J. Goldshmidt, “Interstitial Alloys” (Butterworths, London, 1967).Google Scholar
  5. 5.
    H. H. Hausner and M. G. Bowman (eds), “Fundamentals of Refractory Compounds” (Plenum, New York, 1967).Google Scholar
  6. 6.
    G. V. Samsonov (ed.), “Refractory Transition Metal Compounds; High Temperature Cermets” (Academic Press, New York, London, 1964).Google Scholar
  7. 7.
    “CRC Handbook of Chemical Physics” 70th Edn (CRC Press, Boca Raton, FL, 1989–90).Google Scholar
  8. 8.
    “Ceramic and Glasses”, Engineered Materials Handbook, Vol. 4 (ASM International, 1991).Google Scholar
  9. 9.
    G. V. Samsonov, “The Oxide Handbook” (IFI/Plenum, New York, 1973).Google Scholar
  10. 10.
    E. K. Storms, “The Refractory Carbides” (Academic Press, New York, 1967).Google Scholar
  11. 11.
    Battelle Memorial Laboratory “Engineering Property Data on Selected Ceramics”, Vol. I, Columbus, OH (Metals and Ceramics Information Centre, 1976).Google Scholar
  12. 12.
    I. E. Campbell and E. M. Sherwood, “High-Temperature Materials and Technology” (Wiley, New York, 1967).Google Scholar
  13. 13.
    G. V. Samsonov and I. M. Vinitskii, “Handbook of Refractory Compounds” (Plenum Press, New York, 1980).Google Scholar
  14. 14.
    R. Morrell, “Handbook of Properties of Technical and Engineering Ceramics” (Her Majesty's Stationary Office, London, 1985).Google Scholar
  15. 15.
    L. Heyne, in “Solid Electrolytes”, edited by S. Geller (Springer, Berlin, New York, 1977) p. 169.Google Scholar
  16. 16.
    H. L. Tuller, in “Nonstoichiometric Oxides”, edited by O. T. Sørensen (Academic Press, New York, 1981) p. 271.Google Scholar
  17. 17.
    C. Kittel, “Introduction to Solid State Physics”, 5th Edn (Wiley, New York, 1976).Google Scholar
  18. 18.
    D. C. Hill and H. L. Tuller, in “Ceramic Materials for Electronics — Processing, Properties, and Applications”, edited by R. C. Buchanan (Marcel Dekker, New York, 1986) p. 265.Google Scholar
  19. 19.
    A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld and K. S. Goto, J. Electrochem. Soc. 139 (1992) 3690.Google Scholar
  20. 20.
    A. A. Bauer and J. L. Bates, Battelle Mem. Inst. Rept. 1930 (1974) July 31.Google Scholar
  21. 21.
    A. D. McLeod, J. S. Haggerty and D. R. Sadoway, J. Am. Ceram. Soc. 67 (1984) 705.Google Scholar
  22. 22.
    O. T. Özkan and A. J. Moulson, Br. J. Phys. D Appl. Phys. 3 (1979) 983.Google Scholar
  23. 23.
    R. J. Brook, J. Yee and F. A. Kröger, J. Am. Ceram. Soc. 54 (1971) 444.Google Scholar
  24. 24.
    A. J. Moulson and P. Popper, Proc. Br. Ceram. Soc. 10 (1968) 41.Google Scholar
  25. 25.
    W. J. Lackey, Mater. Sci. Res. 5 (1971) 489.Google Scholar
  26. 26.
    K. Kitazawa and R. L. Coble, J. Am. Ceram. Soc. 57 (1974) 245.Google Scholar
  27. 27.
    R. Steinitz and R. Resnick, J. Appl. Phys. 37 (1966) 3463.Google Scholar
  28. 28.
    J. P. Loup and A. M. Anthony, Rev. Hautes Temp. Réfract. 1 (1964) 15.Google Scholar
  29. 29.
    Idem, ibid. 1 (1964) 193.Google Scholar
  30. 30.
    J. P. Loup, N. Jonkiere and A. M. Anthony, High Temp. High Press. 2 (1970) 75.Google Scholar
  31. 31.
    D. W. Peters, L. Feinstein and C. Peltzer, J. Chem. Phys. 42 (1965) 2345.Google Scholar
  32. 32.
    A. J. Moulson, W. R. Philips and P. Popper, in “Special Ceramics 1964”, edited by P. Popper (Academic Press, London, 1965) p. 199.Google Scholar
  33. 33.
    S. P. Mitoff, J. Chem. Phys. 41 (1964) 2561.Google Scholar
  34. 34.
    E. K. Storms, in “Fundamentals of Refractory Compounds”, edited by H. H. Hausner and M. G. Bowman (Plenum, New York, 1967) p. 67.Google Scholar
  35. 35.
    A. L. Ivanovsky, V. I. Anisimov, D. L. Novikov, A. I. Lichtenshtein and V. A. Gubanov, J. Phys. Chem. Solids 49 (1988) 465.Google Scholar
  36. 36.
    A. L. Ivanovsky, V. I. Anisimov, A. I. Lichtenshtein and V. A. Gubanov, ibid. 49 (1988) 479.Google Scholar
  37. 37.
    A. L. Ivanovsky, D. L. Novikov, V. I. Anisimov and V. A. Gubanov, ibid. 49 (1988) 487.Google Scholar
  38. 38.
    C. W. Nan, R. Z. Yuan and Z. L. Yang, Mater. Sci. Eng. B7 (1991) 283.Google Scholar
  39. 39.
    T. H. Etsell and S. N. Flengas, Chem. Rev. 70 (1970) 339.Google Scholar
  40. 40.
    W. H. Strehlow and E. L. Cook, J. Phys. Chem. Ref. Data 2 (1973) 163.Google Scholar
  41. 41.
    T. H. Etsell and S. N. Flengas, J. Electrochem. Soc. 119 (1972) 1.Google Scholar
  42. 42.
    J. A. Kilner and B. C. H. Steele, in “Nonstoichiometric Oxides”, edited by O. T. Sørensen (Academic Press, New York, 1981) p. 233.Google Scholar
  43. 43.
    J. G. Bendoraitis and R. E. Salomon, J. Phys. Chem. 69 (1965) 3666.Google Scholar
  44. 44.
    E. C. Subbarao, in “Advances in Ceramics: Science and Technology in Zirconia”, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (American Ceramic Society, Westerville, OH, 1981) p. 1.Google Scholar
  45. 45.
    T. Y. Tien and E. C. Subbarao, J. Chem. Phys. 39 (1963) 1041.Google Scholar
  46. 46.
    R. E. Carter and W. L. Roth, in “Electromotive Force Measurements in High-Temperature Systems”, edited by C. B. Alcock (Institution of Mining and Metallurgy, London, 1968) p. 125.Google Scholar
  47. 47.
    J. M. Dixon, L. D. Lagrange, U. Merten, C. F. Miller and J. T. Porter II, J. Electrochem. Soc. 110 (1963) 276.Google Scholar
  48. 48.
    H. L. Tuller and A. S. Nowick, in “Mass Transport Phenomena in Ceramics”, edited by A. R. Cooper and A. H. Heuer (Plenum, New York, 1975) p. 177.Google Scholar
  49. 49.
    H. L. Tuller and A. S. Nowick, J. Electrochem. Soc. 122 (1975) 255.Google Scholar
  50. 50.
    M. F. Lasker and R. A. Rapp, Z. Phys. Chem. (Frankfurtatm Main) 49 (1966) 198.Google Scholar
  51. 51.
    H. S. Maiti and E. C. Subbarao, J. Electrochem. Soc. 123 (1976) 1713.Google Scholar
  52. 52.
    J. W. Patterson, ibid. 118 (1971) 1033.Google Scholar
  53. 53.
    E. T. Rodine, in “Thermoluminescence of Thorium Oxide Single Crystals”, Order No. 71-3654 (University of Nebraska, 1970) p. 140.Google Scholar
  54. 54.
    J. E. Bauerle, J. Chem. Phys. 45 (1966) 4162.Google Scholar
  55. 55.
    N. S. Choudhury and J. W. Patterson, J. Am. Ceram. Soc. 57 (1974) 90.Google Scholar
  56. 56.
    W. L. Worrell, in “Solid Electrolyte”, edited by S. Geller (Springer, New York, 1977) p. 143.Google Scholar
  57. 57.
    T. H. Etsell, Z. Naturfosch. A27 (1972) 1138.Google Scholar
  58. 58.
    J. W. Patterson, J. Electrochem. Soc. 118 (1971) 1033.Google Scholar
  59. 59.
    J. M. Wimmer, L. R. Bidwell and N. M. Tallen, J. Am. Ceram. Soc. 50 (1967) 198.Google Scholar
  60. 60.
    I. Bransky and N. M. Tallan, ibid. 53 (1970) 625.Google Scholar
  61. 61.
    E. C. Subbarao and H. S. Maiti, Solid State Ionics 5 (1981) 539.Google Scholar
  62. 62.
    H. Yahiro, T. Ohuchi, K. Eguchi and H. Arai, J. Mater. Sci. 23 (1988) 1036.Google Scholar
  63. 63.
    J. E. Garnier, R. N. Blumenthal, R. J. Panlener and R. K. Sharma, J. Phys. Chem. Solids 37 (1976) 369.Google Scholar
  64. 64.
    D. Y. Wang and A. S. Nowick, J. Solid State Chem. 35 (1980) 325.Google Scholar
  65. 65.
    R. Gerhardt and A. S. Nowick, J. Am. Ceram. Soc. 69 (1986) 641.Google Scholar
  66. 66.
    T. Takahashi, K. Ito and H. Iwahara, Rev. Energ. Primaire 2 (1966) 42.Google Scholar
  67. 67.
    B. Cales and J. F. Baumard, Rev. Int. Hautes Temper. Réfract. Fr. 17 (1980) 137.Google Scholar
  68. 68.
    R. N. Blumenthal and B. A. Pinz, J. Appl. Phys. 38 (1967) 2376.Google Scholar
  69. 69.
    C. T. Lynch, in “High Temperature Oxides”, Part II, edited by A. M. Alper (Academic Press, New York, 1970) p. 193.Google Scholar
  70. 70.
    H. A. Johansen and J. G. Cleary, J. Electrochem. Soc. 111 (1964) 100.Google Scholar
  71. 71.
    E. Aleshin and R. Roy, J. Am. Ceram. Soc. 45 (1962) 18.Google Scholar
  72. 72.
    J. Besson, D. Deportes and G. Robert, Acad. Sci. Paris C 262 (1966) 527.Google Scholar
  73. 73.
    J. D. Schieltz, J. W. Patterson and D. R. Wilder, J. Electrochem. Soc. 118 (1971) 1257.Google Scholar
  74. 74.
    A. Hammou and C. Deportes, J. Chem. Phys. 7/8 (1974) 431.Google Scholar
  75. 75.
    R. V. Coates and J. W. McMillan, J. Appl. Chem. 14 (1964) 346.Google Scholar
  76. 76.
    H. U. Anderson, in “Proceedings of the 14th Risø International Symposium on Materials Science: High Temperature Electrochemical Behaviour of Fast Ion and Mixed Conductors” (1993) reprint.Google Scholar
  77. 77.
    A. M. Anthony, G. Benezech, F. Cabannes, M. Faucher, M. Foex, Vutien Loc and D. Yerouchalmi, in “Proceedings of the IUPAC 3rd International Symp. on High Temperature Technology” (Butterworths, London, 1969) p. 213.Google Scholar
  78. 78.
    D. B. Meadowcroft, Br. J. Appl. Phys. 2 (1969) 1225.Google Scholar
  79. 79.
    D. P. Karim and A. T. Aldred, Phys. Rev. B 20 (1979) 2255.Google Scholar
  80. 80.
    K. P. Bansal, S. Kumari, B. K. Das and G. C. Jain, J. Mater. Sci. 16 (1981) 1994.Google Scholar
  81. 81.
    H. U. Anderson, R. Murphy, S. Semachaibovorn, B. Rossing, A. Aldred, W. Procarione and R. Ackermann, in “Conference on High Temperature Science Related to Open-Cycle, Cool Fired MHD systems”, Argonne National Laboratory, Argonne, IL, April (1977).Google Scholar
  82. 82.
    W. J. Weber, C. W. Griffin and J. L. Bates, J. Am. Ceram. Soc. 70 (1987) 265.Google Scholar
  83. 83.
    P. S. Devi and M. S. Rao, J. Solid State Chem. 98 (1992) 237.Google Scholar
  84. 84.
    C. J. Yu, H. U. Anderson and D. M. Sparlin, ibid. 78 (1989) 242.Google Scholar
  85. 85.
    H. U. Anderson, in “Processing of Crystalline Ceramics”, Materials Research, Vol. 11 (Pergamon Press, New York, 1978) p. 469.Google Scholar
  86. 86.
    D. B. Meadowcroft and J. M. Wimmer, Am. Ceram. Soc. Bull. 58 (1979) 610.Google Scholar
  87. 87.
    J. P. Traverse and M. Foëx, High Temp. High Press. 1 (1969) 409.Google Scholar
  88. 88.
    A. De Pretis, V. Longo, F. Ricciardiello and O. Sbraizero, Silicates Ind. 7–8 (1984) 139.Google Scholar
  89. 89.
    A. M. Anthony and D. Yerouchalmi, Phil. Trans. R. Soc. (Lond.) 261 (1966) 504.Google Scholar
  90. 90.
    A. M. Anthony, A. Guillot, T. Sata and J. L. Bourgeois, Rev. Hautes Temp. Réfract. 3 (1966) 147.Google Scholar
  91. 91.
    C. Wang, X. Xu and H. Yu, Solid State Ionics 28–30 (1988) 542.Google Scholar
  92. 92.
    D. Janke, Metall. Trans. 13B (1982) 227.Google Scholar
  93. 93.
    W. A. Fischer, D. Janke and M. Schulenburg, Arch. Eisenhüttenw. 47 (1976) 51.Google Scholar
  94. 94.
    W. A. Fischer, D. Janke and M. Schulenburg, ibid. 47 (1976) 525.Google Scholar
  95. 95.
    D. Janke, K. Schwerdtfeger, J. Mach and G. Bomberg, Stahl Eisen 99 (1976) 1211.Google Scholar
  96. 96.
    T. L. Pivovar and V. Ya. Tolstaya-Belik, High Temp. 8 (1979) 1227.Google Scholar
  97. 97.
    K. W. Browall, O. Muller and R. H. Doremus, Mater. Res. Bull. 11 (1976) 1475.Google Scholar
  98. 98.
    B. C. H. Steele, B. E. Powell and P. M. R. Moody, Proc. Br. Ceram. Soc. 10 (1968) 87.Google Scholar
  99. 99.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics”, 2nd Edn (Wiley, New York, 1976).Google Scholar
  100. 100.
    H. Schmalzried, J. Chem. Phys. 33 (1960) 940.Google Scholar
  101. 101.
    C. M. Osburn and R. W. Vest, J. Am. Ceram. Soc. 54 (1971) 428.Google Scholar
  102. 102.
    D. R. Sempolinsky and W. D. Kingery, ibid. 63 (1980) 664.Google Scholar
  103. 103.
    D. R. Sempolinsky, W. D. Kingery and H. L. Tuller, ibid. 63 (1980) 669.Google Scholar
  104. 104.
    J. A. Crawford and R. W. Vest, J. Appl. Phys. 35 (1964) 2413.Google Scholar
  105. 105.
    G. Lorenz and W. A. Fischer, Z. Phys. Chem. N.F. 18 (1958) 265.Google Scholar
  106. 106.
    P. Kofstad and K. P. Lillerud, J. Electrochem. Soc. 127 (1980) 2410.Google Scholar
  107. 107.
    K. Hauffe and J. Block, Z. Phys. Chem. Lpz 198 (1951) 232.Google Scholar
  108. 108.
    F. A. Kröger, Solid State Ionics 12 (1984) 189.Google Scholar
  109. 109.
    E. Dörre and H. Hübner, in “Alumina”, Materials Research and Engineering, edited by B. Ilschner and N. J. Grant (Springer, Berlin, 1984).Google Scholar
  110. 110.
    B. V. Dutt, J. P. Hurrell and F. A. Kröger, J. Am. Ceram. Soc. 58 (1975) 420.Google Scholar
  111. 111.
    B. V. Dutt and F. A. Kröger, ibid. 58 (1975) 474.Google Scholar
  112. 112.
    S. K. Mohapatra and F. A. Kröger, ibid. 60 (1977) 141.Google Scholar
  113. 113.
    Idem, ibid. 60 (1977) 381.Google Scholar
  114. 114.
    S. K. Mohapatra, S. K. Tiku and F. A. Kröger, ibid. 62 (1979) 50.Google Scholar
  115. 115.
    S. K. Tiku and F. A. Kröger, ibid. 63 (1980) 31.Google Scholar
  116. 116.
    M. M. El-Aiat, L. D. Hou, S. K. Tiku, H. A. Wang and F. A. Kröger, ibid. 64 (1981) 174.Google Scholar
  117. 117.
    M. M. El-Aiat and F. A. Kröger, ibid. 65 (1982) 280.Google Scholar
  118. 118.
    C. R. A. Catlow, R. James, W. C. Mackrodt and R. F. Stewart, Phys. Rev. B 25 (1982) 1006.Google Scholar
  119. 119.
    D. J. Dienes, D. O. Welch, C. R. Fischer, R. D. Hatcher, O. Lazareth and M. Samberg, ibid. 11 (1975) 3060.Google Scholar
  120. 120.
    F. A. Kröger, in “Advances in Ceramics”, Vol. 10, edited by W. D. Kingery (American Ceramic Society, Westerville, OH, 1984) p. 1.Google Scholar
  121. 121.
    C. A. Hutchinson Jr and J. G. Malm, J. Am. Chem. Soc. 71 (1949) 1338.Google Scholar
  122. 122.
    C. B. Alcock and G. P. Stravropoulos, ibid. 54 (1971) 436.Google Scholar
  123. 123.
    S. F. Pal'guev and A. D. Neuimin, Sov. Phys. Solid State 4 (1962) 692.Google Scholar
  124. 124.
    C. F. Cline, J. Carlberg and H. W. Newkirk, J. Am. Ceram. Soc. 50 (1966) 55.Google Scholar
  125. 125.
    T. Norby and P. Kofstad, ibid. 67 (1984) 786.Google Scholar
  126. 126.
    Idem, ibid. 69 (1986) 780.Google Scholar
  127. 127.
    Idem, ibid. 69 (1986) 784.Google Scholar
  128. 128.
    N. M. Tallan and R. W. Vest, ibid. 49 (1966) 401.Google Scholar
  129. 129.
    G. V. Subba Rao, S. Ramdas, P. N. Mehrotra and C. N. R. Rao, J. Solid State Chem. 2 (1970) 377.Google Scholar
  130. 130.
    P. Odier, J. P. Loup and A. M. Anthony, Rev. Int. Hautes Temp. Réfract. 8 (1971) 243.Google Scholar
  131. 131.
    J. Schieltz, J. W. Patterson and D. R. Wilder, J. Electrochem. Soc. 118 (1971) 1140.Google Scholar
  132. 132.
    E. E. Shpil'rain, D. N. Kagan, L. S. Barkhatv and L. I. Zhmakin, Rev. Int. Hautes Temp. Réfract. 16 (1979) 233.Google Scholar
  133. 133.
    V. B. Tare and H. Schmalzried, Z. Phys. Chem. N.F. 43 (1964) 30.Google Scholar
  134. 134.
    A. D. Neuimin, V. B. Balakjereva and S. Pal'guev, Dokl. Akad. Nauk SSSR 209 (1973) 1150.Google Scholar
  135. 135.
    Z. S. Volchenkova and D. S. Zubankova, Izv. Akad. Nauk SSSR Neorg. Mater. 12 (1976) 1695.Google Scholar
  136. 136.
    V. A. Dubok and V. V. Lashneva, ibid. 11 (1975) 1250.Google Scholar
  137. 137.
    A. Biggs, D. F. Daily and B. E. Waye, Proc. Br. Ceram. Soc. 23 (1972) 44.Google Scholar
  138. 138.
    E. C. Subbarao, P. H. Sutter and J. Hrizo, J. Am. Ceram. Soc. 48 (1965) 443.Google Scholar
  139. 139.
    K. Uematsu, K. Shinozaki, O. Sakurai, N. Mizutani and M. Kato, ibid. 62 (1979) 219.Google Scholar
  140. 140.
    E. T. Arakawa and M. W. Williams, J. Phys. Chem. Solids 29 (1968) 735.Google Scholar
  141. 141.
    V. N. Abramov, M. G. Karin, A. I. Kuznetsov and K. K. Sidorin, Sov. Phys. Solid State 21 (1979) 47.Google Scholar
  142. 142.
    D. M. Roessler, W. C. Walker and E. Loh, J. Phys. Chem. Solids 30 (1969) 157.Google Scholar
  143. 143.
    D. M. Roessler and W. C. Walker, Phys. Rev. 159 (1967) 733.Google Scholar
  144. 144.
    H. H. Glascock and E. B. Hensley, ibid. 131 (1963) 649.Google Scholar
  145. 145.
    E. E. Shpil'rain, D. N. Kagan, L. S. Barkhatov and L. I. Zhmakin, Rev. Int. Hautes Temp. Réfract. Fr. 16 (1979) 233.Google Scholar
  146. 146.
    Y. Nigara, Jpn J. Appl. Phys. 7 (1968) 404.Google Scholar
  147. 147.
    G. Lorenz and W. A. Fischer, Z. Phys. Chem. N.F. 18 (1958) 265.Google Scholar
  148. 148.
    B. Aronsson, T. Lundström and S. Rundqvist, “Borides, Silicides and Phosphides” (Wiley, New York, 1965).Google Scholar
  149. 149.
    G. Hägg, Z. Phys. Chem. 6 (1930) 221.Google Scholar
  150. 150.
    G. Hägg, ibid. 12 (1931) 33.Google Scholar
  151. 151.
    C. F. Powell, in “High-Temperature Materials and Technology”, edited by I. E. Campbell and E. M. Sherwood (Wiley, New York, 1967) p. 349.Google Scholar
  152. 152.
    E. Rudy and F. Benesovsky, Planseeber. Pulvermet. 8 (1960) 72.Google Scholar
  153. 153.
    D. A. Robins, Powder Metall. 1/2 (1958) 172.Google Scholar
  154. 154.
    R. A. Cultler, in “Ceramics and Glasses”, Engineered Materials Handbook, Vol. 4 by S. R. Lapman, M. S. Woods and T. B. Zorc (ASM International, 1991) p. 787.Google Scholar
  155. 155.
    G. V. Samsonov and Yu. B. Paderno, in “Refractory Transition Metal Compounds; High Temperature Cermets”, edited by G. V. Samsonov (Academic Press, New York, London, 1964) p. 146.Google Scholar
  156. 156.
    W. R. King and R. C. Doward, J. Electrochem. Soc. 132 (1985) 388.Google Scholar
  157. 157.
    M. Bouchacourt, F. Thevenot, J. Mater. Sci. 20 (1985) 1237.Google Scholar
  158. 158.
    D. Emin, in “Boron-Rich Solids”, AIP Conference Proceedings 140, edited by D. Emin, T. Aselage, C. L. Beckel, I. A. Howard and C. Wood, Albuquerque, NM (Am. Inst. Physics, New York, 1985) p. 189.Google Scholar
  159. 159.
    C. Wood, ibid. p. 206.Google Scholar
  160. 160.
    C. G. Harman and W. G. Jr. Mixer, US At. Energy Comm. Rept. BMI-784, Battele Memorial Institute, June 1952 (1952).Google Scholar
  161. 161.
    N. B. Elsner, G. H. Reynolds, J. H. Norman and C. H. Shearer, in “Boron-Rich Solids”, AIP Conference Proceedings 140, edited by D. Emin, T. Aselage, C. L. Beckel, I. A. Howard and C. Wood, Albuquerque, New Mexico(1985) p. 59.Google Scholar
  162. 162.
    C. F. Powel, I. E. Cambell and B. W. Gonser, “Vapor Plating” (Wiley, New York, 1955).Google Scholar
  163. 163.
    M. F. Yan, K. Niwa, H. M. O'Brian Jr and W. S. Young, “Ceramic Substrates and Packages for Electronic Applications”, Advances in Ceramics, Vol. 26 (American Ceramic Society, Westerville, OH, 1989).Google Scholar
  164. 164.
    W. Werdecker and F. Aldinger, IEEE Trans. Compon. Hybrids Manuf. Technol. 7 (1984) 399.Google Scholar
  165. 165.
    J. Pastrnak and L. Roskovcova, Phys. Status Solidi 26 (1968) 591.Google Scholar
  166. 166.
    W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg and S. L. Gibert, J. Appl. Phys. 44 (1973) 292.Google Scholar
  167. 167.
    R. A. Young and J. H. Harris, J. Am. Ceram. Soc. 73 (1990) 3238.Google Scholar
  168. 168.
    R. W. Francis and W. L. Worrell, J. Electrochem. Soc. 123 (1976) 430.Google Scholar
  169. 169.
    M. Yahagi and K. S. Goto, J. Jpn. Inst. Metals Sendai 47 (1983) 419.Google Scholar
  170. 170.
    V. L. Richards, T. Y. Tien and R. D. Pehlke, J. Mater. Sci. 22 (1987) 3385.Google Scholar
  171. 171.
    S. A. Jang and G. M. Choi, J. Am. Ceram. Soc. 76 (1993) 957.Google Scholar
  172. 172.
    M. Zulfequar and A. Kumar, Adv. Ceram. Mater. 3 (1988) 332.Google Scholar
  173. 173.
    J. M. Blocher Jr, in “High-Temperature Materials and Technology”, edited by I. E. Campbell and E. M. Sherwood (Wiley, New York, 1967) p. 379.Google Scholar
  174. 174.
    S. A. Jang and G. M. Choi, J. Am. Ceram. Soc. 75 (1993) 3145.Google Scholar
  175. 175.
    W. A. Groen, J. G. Van Lierop and J. M. Toonen, J. Eur. Ceram. Soc. 11 (1993) 353.Google Scholar
  176. 176.
    M. J. Rand and J. F. Roberts, J. Electrochem. Soc. 115 (1968) 423.Google Scholar
  177. 177.
    R. H. Wentorf Jr, J. Chem. Phys. 26 (1957) 956.Google Scholar
  178. 178.
    F. R. Corrigan and F. P. Bundy, ibid. 63 (1975) 3812.Google Scholar
  179. 179.
    H. P. R. Frederikse, A. H. Kahn and A. L. Dragoo, J. Am. Ceram. Soc. 68 (1985) 131.Google Scholar
  180. 180.
    R. Steinitz, in “Fundamentals of Refractory Compounds”, edited by H. H. Hausner and M. G. Bowman (Plenum, New York, 1967) p. 155.Google Scholar
  181. 181.
    I. I. Zhukova, V. A. Fomichev, A. S. Vinogradov and T. M. Zimkina, Sov. Phy. Solid State 10 (1969) 1097.Google Scholar
  182. 182.
    J. H. Westbrook and E. R. Stover, in “High-Temperature Materials and Technology”, edited by I. E. Campbell and E. M. Sherwood (Wiley, New York, 1967) p. 312.Google Scholar
  183. 183.
    J. T. Norton, H. Blumenthal and S. J. Sindeband, Metall. Trans. 185 (1949) 749.Google Scholar
  184. 184.
    N. V. Kolomoets, V. S. Neshpor, G. V. Samsonov and S. A. Semenkovich, Sov. Phys. Tech. Phys. (Engl. Transl.) 3 (1958) 2186.Google Scholar
  185. 185.
    G. V. Samsonov, Zh. Tekn. Fiz. 26 (1956) 716.Google Scholar
  186. 186.
    H. Remy, “Inorganic Chemistry II” (Akad. Verlagsges, Leipzig, 1959) p. 68.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • C. C. Wang
    • 1
  • S. A. Akbar
    • 1
  • W. Chen
    • 1
  • V. D. Patton
    • 1
  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations