Journal of Materials Science

, Volume 30, Issue 21, pp 5554–5560 | Cite as

Synthesis and characterization of Al2O3 catalyst carriers by sol-gel

  • C. Simon
  • R. Bredesen
  • H. Grøndal
  • A. G. Hustoft
  • E. Tangstad


The sol-gel method has been used to synthesize alumina powder with high surface area from boehmite. The characteristics of the final powder product have been systematically studied in light of the preparation method and starting materials by fractional factorial design. The results show that the type of precursor and pH of the precursor sol are the most important parameters for the textural properties of the calcined alumina powder. When the calcination temperature is increased the type of precursor loses its significance, while the pH still has decisive importance after calcination at 1000°C, on pore volume and surface area. There is also a significant combined effect of several parameters on the surface area and the pore volume. The electrophoretic mobility, agglomerate size and size distribution have been determined as a function of the pH for one type of boehmite sol. The relation between characteristics of the precursor and powder properties is clearly emphasized.


Al2O3 Calcination Pore Volume High Surface Area Calcination Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. I. M. Tijburg, PhD thesis, University of Utrecht, Holland (1989).Google Scholar
  2. 2.
    B. E. Yoldas, Ceram. Bull. 54 (1975) 289.Google Scholar
  3. 3.
    T. Lopez, A. Romero, A. Chavela, L. Razo and R. Gomez, Reaction Kinetics Catal. Lett. 43 (1991) 307.CrossRefGoogle Scholar
  4. 4.
    K. Maeda, F. Mizukami, M. Watanabe, N. Arai and M. Toba, J. Mater. Sci. Lett. 9 (1990) 522.CrossRefGoogle Scholar
  5. 5.
    A. F. M. Leenaars, K. Keizer and A. J. Burggraaf, J. Mater. Sci. 19 (1984) 1077.CrossRefGoogle Scholar
  6. 6.
    D. C. Montgomery, “Design and analysis of experiments” (Wiley, New York, 1976).Google Scholar
  7. 7.
    I. I. M. Tijburg, J. W. Geus and H. W. Zandbergen, J. Mater. Sci. 26 (1991) 6479.CrossRefGoogle Scholar
  8. 8.
    F. M. Bautista, J. M. Campelo, A. Garcia, D. Luna, J. M. Marinas and A. Romero, Appl. Catal. 96 (1993) 175.CrossRefGoogle Scholar
  9. 9.
    Y. Lin and J. Burggraaf, J. Amer. Ceram. Soc. 74 (1991) 219.CrossRefGoogle Scholar
  10. 10.
    M. S. Kaliszewski and A. H. Heuer, ibid. 73 (1990) 1504.CrossRefGoogle Scholar
  11. 11.
    C. Simon, in “Coagulation and flocculation, theory and applications”, Vol. 47, edited by B. Dobiás (Marcel Dekker, 1993) pp. 495–537.Google Scholar
  12. 12.
    P. Colomban, J. Mater. Sci. 24 (1989) 3002.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • C. Simon
    • 1
  • R. Bredesen
    • 1
  • H. Grøndal
    • 1
  • A. G. Hustoft
    • 1
  • E. Tangstad
    • 1
  1. 1.SINTEF OsloOslo 3Norway

Personalised recommendations