Advertisement

Journal of Materials Science

, Volume 30, Issue 21, pp 5531–5536 | Cite as

Hot hardness of Si3N4-based materials

  • R. F. Silva
  • J. M. Vieira
Papers

Abstract

The Vickers hardness of dense Si3N4 ceramics of the Si-Ce-Al-O-N system was investigated from room temperature to 1200°C. A sloppy decrease of hot hardness occurred above 850–900°C. A compensation law was observed between the pre-exponential factors of the hot-hardness dependence on the reciprocal of absolute temperature, and the values of the activation energy of hardness. This relationship shows that the low-temperature deformation mechanism, such as microplasticity, is competing in parallel with a grain-boundary diffusion-controlled creep process in the high-temperature range.

Keywords

Polymer Activation Energy Material Processing Absolute Temperature Deformation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. T. Buljan and S. F. Wayne, Wear 133 (1989) 309.CrossRefGoogle Scholar
  2. 2.
    P. C. Dokko and J. A. Pask, Mater. Sci. Eng. 25 (1976) 77.CrossRefGoogle Scholar
  3. 3.
    J. Frost and M. F. Ashby, “Deformation mechanism maps” (Pergamon Press, New York, 1982).Google Scholar
  4. 4.
    G. Langdon and F. A. Mohamed, J. Mater. Sci. 11 (1976) 317.CrossRefGoogle Scholar
  5. 5.
    R. Notis, in “Deformation of ceramic materials”, edited by R. C. Bradt and R. E. Tressler, (Plenum Press, New York, London, 1975) pp. 1–22.Google Scholar
  6. 6.
    K. Tsukuma, M. S. Shimada and M. Koizumi, Am. Ceram. Soc. Bull. 60 (1981) 910.Google Scholar
  7. 7.
    K. Niihara and T. Hirai, Powder Metall. Int. 16 (1984) 223.Google Scholar
  8. 8.
    T. Ekstrom and J. Persson, J. Am. Ceram. Soc. 73 (1990) 2834.CrossRefGoogle Scholar
  9. 9.
    T. Yamada, A. Tanaka, M. Shimada and M. Koizumi, Ceram. Int. 3 (1982) 93.CrossRefGoogle Scholar
  10. 10.
    I. Tanaka, G. Pezzotti, T. Okamoto, Y. Miyamoto and M. Koizumi, J. Am. Ceram. Soc. 72 (1989) 1656.CrossRefGoogle Scholar
  11. 11.
    N. Uchida, M. Koizumi and M. Shimada, Commun. Am. Ceram. Soc. 68 (1985) C-38.CrossRefGoogle Scholar
  12. 12.
    T. Dosdale and R. J. Brook, J. Mater. Sci. 13 (1978) 167.CrossRefGoogle Scholar
  13. 13.
    Idem, J. Am. Ceram. Soc. 66 (1983) 392.CrossRefGoogle Scholar
  14. 14.
    J. M. Vieira and R. J. Brook, in “Advances in ceramics”, Vol. 10, edited by W. D. Kingery (American Ceramic Society, Columbus, OH, 1983) pp. 438–63.Google Scholar
  15. 15.
    C. P. Gazzara and D. R. Messier, Am. Ceram. Soc. Bull. 56 (1977) 777.Google Scholar
  16. 16.
    E. F. Underwood, “Quantitative stereology” (Addison-Wesley, Reading, Palo Alto, London, Don Mills, 1970).Google Scholar
  17. 17.
    G. Wotting, B. Kanka and G. Ziegler in “Non-oxide technical and engineering ceramics”, edited by S. Hampshire (Elsevier, London, New York, 1986) pp. 83–94.CrossRefGoogle Scholar
  18. 18.
    W. Kollenberg and H. Schneider, J. Am. Ceram. Soc. 72 (1989) 1739.CrossRefGoogle Scholar
  19. 19.
    J. Lankford, J. Mater. Sci. 18 (1983) 1666.CrossRefGoogle Scholar
  20. 20.
    T. G. Nieh and J. Wadsworth, Scripta Metall. Mater. 24 (1990) 1489.CrossRefGoogle Scholar
  21. 21.
    M. G. Naylor and T. F. Page, Technical Report DA-ERO-78-G-010, Cambridge (1981).Google Scholar
  22. 22.
    R. R. Rice, in “Treatise on materials science and technology,” Vol. 11, edited by R. K. MacCrone (Academic Press, New York, 1977) pp. 199–381.Google Scholar
  23. 23.
    P. M. Sargent and T. F. Page, Proc, Brit. Ceram. Soc. 26 (1978) 209.Google Scholar
  24. 24.
    S. Hampshire, R. A. Drew and K. H. Jack, Commun. Am. Ceram. Soc. 67 (1984) C-46.Google Scholar
  25. 25.
    D. R. Messier and A. Broz, ibid. 65 (1982) C-123.CrossRefGoogle Scholar
  26. 26.
    R. F. Silva, A. P. Moreira, J. M. Gomes, A. S. Miranda and J. M. Vieira, Mater. Sci. Eng. A168 (1993) 55.CrossRefGoogle Scholar
  27. 27.
    F. F. Lange and B. I. Davis, J. Mater. Sci. 17 (1982) 3637.CrossRefGoogle Scholar
  28. 28.
    P. M. Sargent and M. F. Ashby, Mater. Sci. Technol. 8 (1992) 594.CrossRefGoogle Scholar
  29. 29.
    J. A. Yeomans, PhD dissertation, University of Cambridge, Cambridge, UK (1986).Google Scholar
  30. 30.
    A. G. Atkins, A. Silverio and D. Tabor, J. Inst. Metals 94 (1966) 369.Google Scholar
  31. 31.
    T. O. Mulhearn and D. Tabor, J. Inst, Metals 89 (1960–61) 7.Google Scholar
  32. 32.
    R. F. Silva and J. M. Vieira, in “Proceedings of the European Ceramic Society 3rd Conference” Vol. 3, edited by P. Duran and J. F. Fernandez (Faenza Editrice Iberica S. L., Castellón de la Plana, 1993) pp. 423–8.Google Scholar
  33. 33.
    R. F. Silva and J. M. Vieira, in “Proceedings of the European Ceramic Society 2nd Conference”, Vol. 2, edited by G. Ziegler and H. Hausner (Deutsche Keramische Gesellschaft, Köln, 1993) pp. 817–21.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. F. Silva
    • 1
  • J. M. Vieira
    • 1
  1. 1.Departamento Eng. Cerâmica e VidroUniversidade de AveiroAveiroPortugal

Personalised recommendations