Advertisement

Journal of Materials Science

, Volume 30, Issue 21, pp 5490–5494 | Cite as

Sintering and crystallization of mullite in diphasic gels

  • L. Pach
  • A. Iratni
  • Z. Hrabe
  • S. Svetík
  • S. Komarneni
Papers

Abstract

Diphasic monolithic mullite gel of stoichiometric composition shows a multiple aggregation of colloidal SiO2 (∼ 12 nm) and AlOOH (∼10 nm) particles. The identity of the colloidal particles is retained up to the crystallization of mullite at a temperature of 1240°C in unpressed or 1220°C in gels cold-isostatically pressed at 1.5 GPa. Intensive sintering is closely followed by crystallization of mullite. Both sintering and crystallization are apparently related with the formation of a silica continuum. Nucleation of mullite appears to occur at points of contact (interface) of SiO2/δ-Al2O3 particles.

Keywords

Polymer Crystallization SiO2 Material Processing Colloidal Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Aksay, D. M. Dabbs and M. Sarikaya, J. Am. Ceram. Soc. 74 (1991) 2343.CrossRefGoogle Scholar
  2. 2.
    Ph. Colomban, Ceram. Int. 15 (1989) 23.CrossRefGoogle Scholar
  3. 3.
    S. Sundaresan and I. A. Aksay, J. Am. Ceram. Soc. 74 (1991) 2388.CrossRefGoogle Scholar
  4. 4.
    K. Okada and N. Otsuka, ibid. 70 (1987) C-245.Google Scholar
  5. 5.
    J. C. Huling and G. L. Messing, ibid. 72 (1989) 1725.CrossRefGoogle Scholar
  6. 6.
    Idem, ibid. 74 (1991) 2374.CrossRefGoogle Scholar
  7. 7.
    K. Okada, N. Otsuka and S. Somiya, Am. Ceram. Soc. Bull. 70 (1991) 2414.CrossRefGoogle Scholar
  8. 8.
    B. E. Yoldas and D. P. Partlow, J. Mater. Sci. 23 (1988) 1895.CrossRefGoogle Scholar
  9. 9.
    D. X. Li and W. J. Thomson, J. Am. Ceram. Soc. 73 (1990) 964.CrossRefGoogle Scholar
  10. 10.
    D. W. Hoffman, R. Roy and S. Komarneni, ibid. 67 (1984) 468.CrossRefGoogle Scholar
  11. 11.
    W. Wei and J. W. Halloran, ibid. 71 (1988) 166.CrossRefGoogle Scholar
  12. 12.
    Idem, ibid. 71 (1988) 581.CrossRefGoogle Scholar
  13. 13.
    I. M. Low and R. McPherson, J. Mater. Sci 24 (1989) 926.CrossRefGoogle Scholar
  14. 14.
    S. J. Wilson and M. H. Stacey, J. Colloid Interface Sci. 82 (1981) 507.CrossRefGoogle Scholar
  15. 15.
    G. Klaussen, G. S. Fischman and J. L. Laughner, Ceram. Eng. Sci. Proc. 11 (1990) 1087.CrossRefGoogle Scholar
  16. 16.
    S. J. Wilson, Proc. Br. Ceram. Soc. 28 (1979) 281.Google Scholar
  17. 17.
    J. Zarzycki, J. Non-Cryst. Solids 121 (1990) 110.CrossRefGoogle Scholar
  18. 18.
    Y. Wang, D. X. Li and W. J. Thomson, J. Mater. Res. 8 (1993) 195.CrossRefGoogle Scholar
  19. 19.
    S. Komarneni, Y. Suwa and R. Roy, J. Am. Ceram. Soc. 69 (1986) C-155.Google Scholar
  20. 20.
    J. Zheng and J. S. Reed, Am. Ceram. Soc. Bull. 71 (1992) 1410.Google Scholar
  21. 21.
    D. P. Partlow and B. E. Yoldas, J. Non-Cryst. Solids 46 (1981) 153.CrossRefGoogle Scholar
  22. 22.
    R. K. Iler, “The Chemistry of silica” (Wiley, New York, 1979) Ch. 3, p. 235.Google Scholar
  23. 23.
    L. Pack, to be published.Google Scholar
  24. 24.
    C. J. Brinker and G. W. Scherer, “Sol-gel science” (Academic Press, Boston, 1990) Ch. 3, pp. 97–228.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • L. Pach
    • 1
  • A. Iratni
    • 1
  • Z. Hrabe
    • 1
  • S. Svetík
    • 1
  • S. Komarneni
    • 2
  1. 1.Faculty of Chemical Technology, Department of Ceramics, Glass and CementSlovak Technical UniversityBratislava, Radlinského 9Slovakia
  2. 2.Intercollege Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations