Journal of Materials Science

, Volume 30, Issue 21, pp 5484–5489 | Cite as

Mössbauer study on the magnetic state of iron particles in Fe-N and Fe-Zr-N soft magnetic thin films

  • T. Komatsu
  • K. Shimagami
  • K. Matusita
  • K. Terunuma
  • M. Miyazaki


The magnetic state of α-Fe particles and the behaviour of nitrogen and zirconium during annealing in Fe96N4 and Fe85.6Zr7.6N6.8 magnetic thin films have been studied by conversion electron Mössbauer spectroscopy for 57Fe. The crystalline phases present in the Fe-N annealed films were α-Fe and γ′-Fe4N, and those in the Fe-Zr-N annealed films were α-Fe and ZrN. In the Fe-N films annealed below 300°C, about 60% nitrogen is incorporated interstitially into α-Fe and the rest is used for the formation of γ′-Fe4N. In the Fe-N film annealed at 500°C, almost all nitrogen participates in the formation of γ-Fe4N, leading to the grain growth of α-Fe particles and an increase in coercive force. The values (291–325 kOe) of internal magnetic field of iron sites in α-Fe in the Fe-Zr-N films are much smaller than that (333 kOe) of the iron site in pure α-Fe. Even if the Fe-Zr-N films were annealed at 500–700°C, some zirconium and nitrogen is still incorporated substitutionally and interstitially into α-Fe, respectively. In particular, the substitutional zirconium depresses the grain growth of α-Fe particles, perhaps due to a chemical interaction between zirconium and iron.


Nitrogen Iron Magnetic Field Zirconium Crystalline Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Terada, Y. Hoshi, M. Naoe and S. Yamanaka, IEEE Trans. Magn. MAG-20 (1984) 1451.CrossRefGoogle Scholar
  2. 2.
    S. Wang and M. H. Kryder, J. Appl Phys. 67 (1990) 5134.CrossRefGoogle Scholar
  3. 3.
    K. Terunuma, M. Miyazaki, H. Kawashima and K. Terazono, J. Magn. Soc. Jpn 14 (1990) 257.CrossRefGoogle Scholar
  4. 4.
    M. H. Kryder, S. Wang and K. Rook, J. Appl. Phys. 73 (1993) 6212.CrossRefGoogle Scholar
  5. 5.
    G. Qiu, E. Haftek and J. A. Barnard, ibid. 73 (1993) 6573.CrossRefGoogle Scholar
  6. 6.
    R. Aeben, J. J. Becker and M. C. Chi, ibid. 49 (1978) 1653.CrossRefGoogle Scholar
  7. 7.
    G. Herzer, IEEE Trans. Magn. MAG-26 (1990) 1397.CrossRefGoogle Scholar
  8. 8.
    C. Lo, S. V. Krishnaswamy, R. Messier, K. R. P. M. Rao and L. N. Mulay, J. Vac. Sci. Technol. 18 (1981) 313.CrossRefGoogle Scholar
  9. 9.
    K. Nakajima, S. Okamoto and T. Okada, J. Appl. Phys. 65 (1989) 4357.CrossRefGoogle Scholar
  10. 10.
    D. H. Mosca, P. H. Dioniso, W. H. Schreiner, I. J. R. Baumvol and C. Acxhete, ibid. 67 (1990) 7514.CrossRefGoogle Scholar
  11. 11.
    B. C. Frazer, Phys. Rev. 112 (1958) 751.CrossRefGoogle Scholar
  12. 12.
    S. Matar, B. Siberchicot, M. Penicaud and G. Demazeau, J. Phys. I Fr. 2 (1992) 1819.CrossRefGoogle Scholar
  13. 13.
    C. R. Barrett, W. D. Nix and A. S. Tetelman, “The Principles of Engineering Materials” (Prentice-Hall, New Jersey, 1973) p. 155.Google Scholar
  14. 14.
    F. E. Fujita, “Topics in Applied Physics: Mössbauer Spectroscopy”, edited by U. Gonser (Springer, New York, 1975) p. 215.Google Scholar
  15. 15.
    K. Nago, H. Sakakima and K. Ihara, J. Magn. Soc. Jpn 15 (1991) 365.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • T. Komatsu
    • 1
  • K. Shimagami
    • 1
  • K. Matusita
    • 1
  • K. Terunuma
    • 2
  • M. Miyazaki
    • 3
  1. 1.Department of ChemistryNagaoka University of TechnologyNagaokaJapan
  2. 2.R and D Laboratory, Data Storage Components GroupTDK Co.IchikawaJapan
  3. 3.R and D Laboratory, Data Storage Components GroupTDK Co.YamanashiJapan

Personalised recommendations