Journal of Materials Science

, Volume 30, Issue 21, pp 5479–5483 | Cite as

A small-specimen investigation of the fracture toughness of Ti5Si3

  • Kyu Sung Min
  • A. J. Ardell
  • S. J. Eck
  • F. C. Chen


The fracture toughness of the refractory hardmetal Ti5Si3, with a grain size between 5 and 6 μm, was measured using the controlled-flaw method in conjunction with the miniaturized disc-bend test. The specimens used in these experiments were 3 mm diameter and varied in thickness from 150–450 μm. They were indented using a Vickers pyramid indentor to indention loads varying from 2.9–79.2 N. Indentation cracking was experienced at all indentation loads, and R-curve behaviour was exhibited. The fracture toughness was determined to be 2.69 ± 0.21 MPam1/2 using a straightforward graphical procedure involving an empirical R-curve equation. This value is almost 30% higher than that of similar material (2.1 MPam1/2) with a larger grain size, suggesting that the fracture toughness of this material, which fractures intergranularly, might be grain-size dependent.


Polymer Grain Size Fracture Toughness Pyramid Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Sakai and R. C. Bradt, Int. Mater. Rev. 38 (1993) 53.CrossRefGoogle Scholar
  2. 2.
    P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc. 64 (1981) 539.CrossRefGoogle Scholar
  3. 3.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, ibid. 64 (1981) 533.CrossRefGoogle Scholar
  4. 4.
    H. Li, F. C. Chen and A. J. Ardell, Metall. Trans. 22A (1991) 2061.CrossRefGoogle Scholar
  5. 5.
    D. E. Meyers, F. C. Chen, J. Zhang and A. J. Ardell, J. Test. Eval. 21 (1993) 263.CrossRefGoogle Scholar
  6. 6.
    J. Zhang and A. J. Ardell, J. Mater. Res. 6 (1991) 1950.CrossRefGoogle Scholar
  7. 7.
    Idem, J. Am. Ceram. Soc. 76 (1993) 1340.CrossRefGoogle Scholar
  8. 8.
    F. C. Chen and A. J. Ardell, Intermetallics, (1994) in press.Google Scholar
  9. 9.
    R. Rosenkranz, G. Frommeyer and W. Smarsly, Mater. Sci. Eng. A152 (1992) 288.CrossRefGoogle Scholar
  10. 10.
    M. N. Giovan and G. Sines, J. Am. Ceram. Soc. 62 (1979) 510.CrossRefGoogle Scholar
  11. 11.
    B. R. Lawn, A. G. Evans and D. B. Marshall, ibid. 63 (1980) 574.CrossRefGoogle Scholar
  12. 12.
    D. K. Shetty, A. R. Rosenfield and W. H. Duckworth, ibid. 68 (1985) C65.CrossRefGoogle Scholar
  13. 13.
    J. C. Newman Jr. and I. S. Raju, Eng. Fract. Mech. 15 (1981) 185.CrossRefGoogle Scholar
  14. 14.
    R. F. Cook, B. R. Lawn and C. J. Fairbanks, J. Am. Ceram. Soc. 68 (1985) 604.CrossRefGoogle Scholar
  15. 15.
    Y.-W. Mai and B. R. Lawn, Ann. Rev. Mater. Sci. 16 (1986) 415.CrossRefGoogle Scholar
  16. 16.
    N. Ramachandran and D. K. Shetty, J. Am. Ceram. Soc. 74 (1991) 2634.CrossRefGoogle Scholar
  17. 17.
    Idem, J. Mater. Sci. 28 (1993) 6120.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Kyu Sung Min
    • 1
  • A. J. Ardell
    • 1
  • S. J. Eck
    • 1
  • F. C. Chen
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations