Advertisement

Journal of Materials Science

, Volume 30, Issue 21, pp 5466–5472 | Cite as

Computer modelling of porous silicon formation

  • R. M. Vadjikar
  • A. K. Nath
Papers

Abstract

Porous silicon formation has been simulated by the finite diffusion length (FDL) model. This considers a dynamic isoconcentration profile from which the aggregating particles begin their random walks. In this paper we report on the isoconcentration profile non-uniformities which increase as the finite diffusion length is increased. The implementation of the FDL model with zero diffusion length generates non-fractal structures with a fractal dimension close to 1. It is found that Eden clusters cannot be generated at zero diffusion length, due to the problem of “sinking isoconcentration profile”. We conclude that these are limitations that should be considered in the FDL model for improving the understanding of physical phenomena such as formation and morphology of porous silicon.

Keywords

Polymer Silicon Computer Modelling Fractal Dimension Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. T. Canham, Appl. Phys. Lett. 57 (1990) 1046.CrossRefGoogle Scholar
  2. 2.
    I. Berbezier and A. Halimaoui, J. Appl. Phys. 74 (1993) 5421.CrossRefGoogle Scholar
  3. 3.
    R. M. Vadjikar, R. Nandedkar, D. D. Bhawalkar, S. Venkatachalam, R. Dussane and A. N. Chandorkar, J. Mater. Sci. Lett. 13 (1994) 222.CrossRefGoogle Scholar
  4. 4.
    R. M. Vadjikar, B. Jain, P. K. Gupta, R. Nandedkar, D. D. Bhawalkar, M. J. Patni, R. Srinivasa and A. N. Chandorkar, Mater. Sci. Eng. B23 (1994) L13.CrossRefGoogle Scholar
  5. 5.
    T. Unagami, J. Electrochem. Soc. 127 (1980) 476.CrossRefGoogle Scholar
  6. 6.
    M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, J. Crystal Growth 73 (1985) 622.CrossRefGoogle Scholar
  7. 7.
    R. L. Smith, S.-F. Chuang and S. D. Collins, J. Electron. Mater. 17 (1988) 533.CrossRefGoogle Scholar
  8. 8.
    R. L. Smith and S. D. Collins, J. Appl. Phys. 71 (1992) R1.CrossRefGoogle Scholar
  9. 9.
    M. Eden, in Proceedings of Fourth Berkeley Symposium on Mathematics, Statistics and Probability, edited by J. Neyman, Vol. IV (University of California Press, Berkeley, 1961) p. 223.Google Scholar
  10. 10.
    T. A. Witten and L. M. Sander, Phys. Rev. B 27 (1983) 5686.CrossRefGoogle Scholar
  11. 11.
    R. L. Smith and S. D. Collins, Phys. Rev. A 39 (1989) 5409.CrossRefGoogle Scholar
  12. 12.
    R. C. Tausworth, Math. Comp. 19 (1965) 201.CrossRefGoogle Scholar
  13. 13.
    S. Kirkpatrick and E. P. Stoll, J. Comp. Phys. 40 (1980) 517.CrossRefGoogle Scholar
  14. 14.
    T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47 (1981) 1400.CrossRefGoogle Scholar
  15. 15.
    P. Meakin, Phys. Rev. A 27 (1983) 5686.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. M. Vadjikar
    • 1
  • A. K. Nath
    • 1
  1. 1.Center for Advanced TechnologyIndoreIndia

Personalised recommendations