Journal of Materials Science

, Volume 30, Issue 21, pp 5438–5448 | Cite as

Pilot-scale casting of single-crystal copper wires by the Ohno continuous casting process

  • H. Soda
  • A. McLean
  • Z. Wang
  • G. Motoyasu


Single-crystal copper wires, 4 mm in diameter, have been produced using the horizontal Ohno continuous casting (OCC) process and a casting regime for the production of single crystals has been established. It was found that at lower casting speeds (< 50 mm min−1), single-crystal wires with no visible substructures were produced. However, at casting speeds above 50 mm min−1, the wire contained unidirectional subtexture and occasional stray crystals. The orientation of crystals parallel to the casting direction tended to be ť001〉 at higher casting speeds (∼ 120 mm min−1); at lower casting speeds, the orientation appeared to be random. It was also found that the solidifying wire recrystallized as it emerged from the mould if local strains were inflicted upon the cast surface by mould-strand friction.


Polymer Copper Material Processing Local Strain Casting Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Goss, “The art and science of growing crystals” edited by J. J. Gilman (Wiley, New York, 1963) p. 314.Google Scholar
  2. 2.
    R. A. Laudise, “The growth of single crystals”, Solid State Physical Electronics Series, edited by N. Holonyak Jr (Prentice-Hall, New Jersey, 1970) p. 141.Google Scholar
  3. 3.
    A. Ohno, J. Metals 38 (1) (1986) 14.Google Scholar
  4. 4.
    K. Nakano, in “Proceedings of the Third International Conference on Solidification Processing” (The Institute of Metals, London, 1987) p. 413.Google Scholar
  5. 5.
    K. Sawada, Y. Nakai, H. Shiraishi, T. Nakano, Y. Matsushita and M. Ojima, Sumitomo Elect. Tech. Rev. 27, January (1988) 140.Google Scholar
  6. 6.
    H. Soda, F. Chabchoub, S. A. Argyropoulos and A. McLean, Can. Metall. Q. 31 (1992) 231.CrossRefGoogle Scholar
  7. 7.
    H. Soda, G. Motoyasu, F. Chabchoub, H. Hu and A. McLean, Cast Metals 6 (1994) 225.CrossRefGoogle Scholar
  8. 8.
    B. Chalmers, “Principles of solidification” (Krieger, Malabar, FL, 1982) p. 307.Google Scholar
  9. 9.
    B. Chalmers, Can. J. Phys. 31 (1953) 132.CrossRefGoogle Scholar
  10. 10.
    M. Yamamoto and J. Watanabe, Nippon Kinzoku Gakkai-Shi 23 (1959) 675.Google Scholar
  11. 11.
    Idem. ibid. 23 (1959) 679.Google Scholar
  12. 12.
    F. W. Young Jr, J. Appl. Phys. 32 (1961) 192.CrossRefGoogle Scholar
  13. 13.
    D. C. Joy, D. E. Newbury and D. L. Davidson, ibid. 53 (1982) R81.CrossRefGoogle Scholar
  14. 14.
    A. Rosenberg and W. A. Tiller, Acta Metall. 5 (1957) 565.CrossRefGoogle Scholar
  15. 15.
    F. W. Young Jr and J. R. Savage, J. Appl. Phys. 35 (1964) 1917.CrossRefGoogle Scholar
  16. 16.
    J. H. Wernick and H. M. Davis, ibid. 29 (1956) 149.CrossRefGoogle Scholar
  17. 17.
    S. S. Leu, W. H. Weng, G. C. Liu, S. F. Chang and S. S. Wu, in “Proceedings of the Annual Conference of the Chinese Society for Materials Science (Chinese Society for Materials Science, Chutung Hsinchu, Taiwan, 1992) p. 164.Google Scholar
  18. 18.
    L. C. Lovell and J. H. Wernick, J. Appl. Phys. 30 (1959) 590.CrossRefGoogle Scholar
  19. 19.
    H. Akita, D. S. Sampar and N. F. Fiore, Metall. Trans. 4 (1973) 1597.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • H. Soda
    • 1
  • A. McLean
    • 1
  • Z. Wang
    • 1
  • G. Motoyasu
    • 2
  1. 1.Department of Metallurgy and Materials ScienceUniversity of TorontoTorontoCanada
  2. 2.Department of Metallurgical EngineeringChiba Institute of TechnologyChiba-kenJapan

Personalised recommendations