Journal of Materials Science

, Volume 30, Issue 21, pp 5427–5432 | Cite as

Thermal behaviours of mechanically alloyed Ti50Al50 in a nitrogen atmosphere

  • K. Y. Wang


Thermal behaviours of mechanical alloyed Ti50Al50 powders in a nitrogen atmosphere are investigated in this paper. X-ray diffraction and differential thermal analysis were used to determine their characteristics. At the initial milling stage, large amounts of defects were introduced and the grain sizes were gradually refined. The enthalpy changes of formation of γ-TiAl and α2-Ti3Al were decreased with increasing milling times. No obvious dissolution of nitrogen into the powder particles occurred at this stage. With increasing milling time, an amorphous phase containing nitrogen gradually occurred. The amorphous phase and small amounts of Ti solid solution were obtained after milling for 30 h in a N2 atmosphere. The thermal process included two stages. Firstly, the amorphous phase crystallized at low temperature and resulted in the formation of a nanophase; secondly, the grain growth of this nanocrystalline phase occurred at high temperature. The annealing products are different for the milling products obtained at the initial stage (γ-TiAl + α2-Ti3Al) and final stage (γ-TiAl + Ti2AlN), which is attributed to the different nitrogen contents in the milled products. The activation energies for the crystallization and grain growth are 251.9 and 296.9 kJ mol−1, respectively.


Activation Energy Milling Nitrogen Content Differential Thermal Analysis Nitrogen Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Koch, O. B. Cavin, C. G. McKamey and J. C. Scarbrough, Appl. Phys. Lett. 43 (1983) 1017.CrossRefGoogle Scholar
  2. 2.
    R. B. Schwarz, R. R. Petrich, and C. K. Saw, J. Non-Cryst Solids 76 (1985) 281.CrossRefGoogle Scholar
  3. 3.
    K. Y. Wang, T. D. Shen, J. T. Wang and M. X. Quan, Scripta Metall. Mater 25 (1991) 2227.CrossRefGoogle Scholar
  4. 4.
    E. Hellstern and L. Schultz, Phi. Mag. B56 (1987) 443.CrossRefGoogle Scholar
  5. 5.
    F. H. Froes, C. Suryanarayana and D. Eliezer, J. Mater Sci. 27 (1992) 5113.CrossRefGoogle Scholar
  6. 6.
    S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler (eds), “High temperature aluminides and intermetallics” (Metallurgical Society of AIME, Warrendale, PA, 1990).Google Scholar
  7. 7.
    H. Mabuchi, H. Tsuda, Y. Nakayama and E. Sukedai, J. Mater. Res. 7 (1992) 894.CrossRefGoogle Scholar
  8. 8.
    H. Chang, C. J. Altstetter and R. S. Averback, ibid. 7 (1992) 2962.CrossRefGoogle Scholar
  9. 9.
    T. Itsukaichi, S. Shiga, K. Masuyama, M. Umemoto and I. Okane, Mater. Sci. Forum 88–90 (1992) 631.CrossRefGoogle Scholar
  10. 10.
    T. Itsukaichi, K. Masuyama, M. Umemoto, I. Okane and J. G. Cabañas-Moreno, J. Mater. Res. 8 (1993) 1817.CrossRefGoogle Scholar
  11. 11.
    C. Suryanarayana, Guo-Hao Chen, Abdul-Baser Frefer and F. H. Froes, Mater. Sci & Eng. A158 (1992) 93.CrossRefGoogle Scholar
  12. 12.
    M. Oehring, T. Klassen and R. Bormann, J. Mater. Res 8 (1993) 2819.CrossRefGoogle Scholar
  13. 13.
    G. Chen and K. Wang, in “Proceedings of the 2nd International Conference on Structural Application of Mechanical Alloying”, edited by J. J. deBarbadillo, F. H. Froes and R. Schwarz ASM, Materials Park, OH (1993), p. 149.Google Scholar
  14. 14.
    K. Y. Wang, G. L. Chen and J. G. Wang, Scripta Metall. Mater. 31 (1994) 87.CrossRefGoogle Scholar
  15. 15.
    Masaharu Yamaguchi and Haruyuki Inui, in “Structural metallics”, edited by R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D. B. Mircle and M.V. Nathal (The Minerals, Metals & Materials Society, 1993) p. 127.Google Scholar
  16. 16.
    Y. Ogino, T. Yamasaki, M. Miki, N. Atsumi and K. Yoshioka, Scripta Metall. Mater. 28 (1993) 967.CrossRefGoogle Scholar
  17. 17.
    K. Y. Wang, to be published.Google Scholar
  18. 18.
    K. Y. Wang, A. Q. He and J. T. Wang, Metall. Trans. 24A (1993) 225.CrossRefGoogle Scholar
  19. 19.
    Y. Yoshizawa, S. Oguma and K. Yamauchi, J. Appl. Phys. 64 (1988) 6044.CrossRefGoogle Scholar
  20. 20.
    H. E. Kissinger, Anal. Chem. 26 (1957) 1702.CrossRefGoogle Scholar
  21. 21.
    P. G. Boswell, J. Thermal. Anal. 18 (1980) 353.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • K. Y. Wang
    • 1
  1. 1.State Key Laboratory for Advanced Metal Materials and Department of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations