Advertisement

Journal of Materials Science

, Volume 30, Issue 21, pp 5415–5426 | Cite as

MoSi2 diffusion barrier for the passivation of copper at elevated temperatures

  • R. Cvitkovic
  • D. G. Ivey
  • J. Stiles
Papers

Abstract

Sputter deposited MoSi2 coatings (200 and 400 nm thick) on copper have been studied in an attempt to prevent or at least reduce the oxidation of copper. Samples were exposed to an air ambient at temperatures ranging from 600–850 °C for up to 15 min. Sputter-deposited MoSi2 was amorphous upon deposition and crystallized on annealing. Silicon from the MoSi2 was found to diffuse into the copper causing the MoSi2 to transform to lower suicides. The primary oxidation product for MoSi2-coated samples was CuO (with small amounts of Cu2O), which is in contrast to uncoated copper where Cu2O is the main oxidation product. The amount of copper consumed by oxidation, for a 200 nm MoSi2 barrier relative to uncoated copper, was reduced by ≈ 140 times at 600 °C and ≈30 times at 800 °C. A 400 nm MoSi2 coating yielded an improvement of ≈420 times at 600°C, and ≈200 times at 850 °C. For the 400 nm barrier exposed to air for 15 min, this corresponds to a 35 nm CuO layer at 600°C and a 300 nm thick oxide layer at 850 °C.

Keywords

Copper Silicon Elevated Temperature Oxide Layer Oxidation Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. E. Pitkanen, J. P. Cummings and C. J. Speerschneider, Solid State Technol. October 23 (1980) 141.Google Scholar
  2. 2.
    J. R. Larry, R. M. Rosenberg and R. O. Uhler, IEEE Trans. Compon. Hybrids Manuf. Technol. CHMT-3 (2) (1980) 211.Google Scholar
  3. 3.
    J. Li, Y. Shachan-Diamand and J. W. Mayer, Mater. Sci. Rep. 9 (1992) 1.CrossRefGoogle Scholar
  4. 4.
    J. M. E. Harper, E. G. Colgan, C-K. Hu, J. P. Hummel, L. P. Buchwalter and C. E. Uzoh, MRS Bull. 18 (8) (1994) 23.CrossRefGoogle Scholar
  5. 5.
    S-Q. Wang, ibid. 18 (8) (1994) 30.CrossRefGoogle Scholar
  6. 6.
    M. A. Nicolet, Thin Solid Films 52 (1978) 415.CrossRefGoogle Scholar
  7. 7.
    R. Pretorius, J. Electrochem. Soc. 128 (1981) 107.CrossRefGoogle Scholar
  8. 8.
    R. Pretorius, W. Strydom, J. W. Mayer and C. Comrie, Phys. Rev. B22 (1980) 1885.CrossRefGoogle Scholar
  9. 9.
    M. Bartur and M. A. Nicolet, Appl. Phys. Lett. 40 (1982) 175.CrossRefGoogle Scholar
  10. 10.
    J. R. Chen, Y. C. Liu and S. D. Chu, ibid. 40 (1982) 263.CrossRefGoogle Scholar
  11. 11.
    S. P. Murarka and C. Chang, ibid. 37 (1980) 639.CrossRefGoogle Scholar
  12. 12.
    S. P. Murarka, D. B. Fraser, W. S. Lindenberger and A. K. Sinha, J. Appl. Phys. 51 (1980) 3241.CrossRefGoogle Scholar
  13. 13.
    T. Mochizuki and M. Kashiwagi, J. Electrochem. Soc. 127 (1980) 1128.CrossRefGoogle Scholar
  14. 14.
    T. Inoue and K. Koike, Appl. Phys. Lett. 33 (1978) 826.CrossRefGoogle Scholar
  15. 15.
    B. L. Crowder and S. Zirinsky, IEEE J. Solid State Circ. SC-14 (1979) 291.CrossRefGoogle Scholar
  16. 16.
    A. K. Sinha, J. Vac. Sci. Technol. 19 (1981) 778.CrossRefGoogle Scholar
  17. 17.
    D. R. Wolters, J. Electrochem. Soc. 127 (1980) 2073.CrossRefGoogle Scholar
  18. 18.
    P. T. B. Shaffer, “Plenum Press Handbook of High Temperature Materials No. 1 Materials Index” (Plenum Press, New York, 1964).Google Scholar
  19. 19.
    M. A. Nicolet and S. S. Lau, in “VLSI Electronics: Microstructural Science”, edited by N. G. Einsprach Vol. 7 (Academic Press, San Diego, 1983) Ch. 6.Google Scholar
  20. 20.
    E. A. Brandes, “Smithells Metals Reference Book”, 6th Edn. (Butterworths, London, 1983).Google Scholar
  21. 21.
    E. I. Allessandrini, D. R. Campbell and K. N. Tu, J. Appl. Phys. 45 (1974) 4888.CrossRefGoogle Scholar
  22. 22.
    Von E. Fitzer, in “Plansee Proceedings, 2nd Seminar” edited by F. Benesovsky, Reutte/Tyrol (1956) 56.Google Scholar
  23. 23.
    T. C. Chou and T. G. Nieh, J. Mater Res. 8 (1993) 214.CrossRefGoogle Scholar
  24. 24.
    Idem, J. Metals December (1993) 15.Google Scholar
  25. 25.
    Powder Diffraction Files, JCPDS-International Center for Diffraction Data (1993).Google Scholar
  26. 26.
    J. J. Petrovic, MRS Bull. 18(7) (1993) 35.CrossRefGoogle Scholar
  27. 27.
    V. Ananth, S. K. Bose and S. C. Sirkar, Scripta Metall. 14 (1980) 687.CrossRefGoogle Scholar
  28. 28.
    C. Zhou and W. W. Smeltzer, High Temp. Oxid. Sulph. Proc. 22 (1990) 43.Google Scholar
  29. 29.
    C. Wagner, Phys. Chem. 21 (1993) 25.Google Scholar
  30. 30.
    Idem. “Handbuch der Metallphysik”, edited by G. Masing 1, Part 2 (Akademische verlagsgesellschaft, Leipzig, 1940) p. 144.Google Scholar
  31. 31.
    G. Valensi, in “Pittsburgh International Conference on Surface Reactions” (Corrosion, Pittsburgh, 1948) p. 156.Google Scholar
  32. 32.
    A. Ronnquist and H. Fischmeister, J. Inst. Metals 89 (1990-61) 65.Google Scholar
  33. 33.
    M. Matyas, Czech. J. Phys. 5 (1955) 214.CrossRefGoogle Scholar
  34. 34.
    E. A. Gulbransen and W. R. McMillan. J. Electrochem. Soc. 99 (1952) 393.CrossRefGoogle Scholar
  35. 35.
    G. Garnaud, Oxid. Metals 11 (3) (1977) 127.CrossRefGoogle Scholar
  36. 36.
    D. W. Bridges, J. P. Baur, G. S. Baur and W. M. Fassell, J. Electrochem. Soc. 104 (1957) 749.CrossRefGoogle Scholar
  37. 37.
    J. Li and J. W. Mayer, Mater. Chem. Phys. 32 (1992) 1.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. Cvitkovic
    • 1
  • D. G. Ivey
    • 1
  • J. Stiles
    • 2
  1. 1.Department of Mining, Metallurgical and Petroleum EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Sherrit Inc.AlbertaCanada

Personalised recommendations