Journal of Materials Science

, Volume 30, Issue 21, pp 5405–5414 | Cite as

The stability and a.c. electrical characteristics of composites containing YBa2Cu3O7−x and alumina at elevated temperatures

  • A. Ovenston
  • D. Qin
  • L. Shields
  • J. R. Walls


Samples of a high-temperature superconductor YBa2Cu3O7−x (orthorhombic phase) showed no significant weight loss in nitrogen up to 1173 K; however, differential thermal analysis measurements show that restructuring/decomposition begins around 1121 K. No reaction with alumina was found after prolonged heating at 1073 K. Electrical properties between 100 Hz and 1 MHz were generally stable at high temperatures, with little variation in properties at 1 MHz in inert and oxidizing atmospheres. Surface oxygen can be removed at high temperatures in flowing argon causing erratic electrical behaviour at lower frequencies and lower temperatures, which can be associated with changes in the oxygen content, x, and partial quenching to the high-temperature tetragonal phase. Stability and electrical tests after pretreatment of YBCO-alumina composites at 933 K in CO2 or steam showed partial decomposition to BaCO3, CuO and Y2Cu2O5 and a phase transition from orthorhombic to tetragonal in the YBa2Cu3O7−x. The original state could be retrieved by calcination in air at73 K.


Phase Transition Steam Calcination Differential Thermal Analysis Tetragonal Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. J. Pickering and J. M. Thomas, J. Chem. Soc. Farad. Trans. 87 (1991) 3067.CrossRefGoogle Scholar
  2. 2.
    D. Klissurski and V. Rives, Appl. Cat. A: Gen. 109 (1994) 1.CrossRefGoogle Scholar
  3. 3.
    A. Ovenston, J. R. Walls, A. Allen and W. Armstrong, J. Mater. Sci. 29 (1994) 1358.CrossRefGoogle Scholar
  4. 4.
    A. Ovenston, J. R. Walls and D. Sprînceanã, J. Mater. Sci. Lett. 14 (1995) 311.CrossRefGoogle Scholar
  5. 5.
    G. Dell'Agli, O. Marino, G. Mascolo, P. Pernice, A. Di Chiara, G. Pepe and U. Scotto Di Uccio, J. Mater. Sci: Mater. Electron. 1 (1990) 20 (and references [1–7] therein).Google Scholar
  6. 6.
    I. M. Low, S. S. Low and C. Klauber, J. Mater. Sci. Lett. 12 (1993) 1574.CrossRefGoogle Scholar
  7. 7.
    M. F. Yan, R. L. Barns, H. M. O'Bryan, Jr, P. K. Gallagher, R. C. Sherwood and S. Jin, Appl. Phys. Lett. 51 (1987) 532.CrossRefGoogle Scholar
  8. 8.
    D. Zhuang, M. Xiao and Z. Zhang, Solid State Commun. 69 (1989) 179.CrossRefGoogle Scholar
  9. 9.
    M. A. Rodriguez, R. L. Snyder, B. J. Chen, D. P. Matheis, S. T. Misture, V. D. Freshette, G. Zorn, H. E. Göbel and B. Seebacher, Phys. C 206 (1993) 43.CrossRefGoogle Scholar
  10. 10.
    H. Fjellvåg, P. Karen, A. Kjekshus, P. Kofstad and T. Norby, Acta Chem. Scand. A42 (1988) 178.CrossRefGoogle Scholar
  11. 11.
    A. Ovenston and J. R. Walls, Trans. I. Ch. E. 68 (1990) 530.Google Scholar
  12. 12.
    Idem, J. Catal. 140 (1993) 464.CrossRefGoogle Scholar
  13. 13.
    J-P. Zhou and J. T. McDevitt, Solid State Commun. 86 (1993) 11.CrossRefGoogle Scholar
  14. 14.
    A. Ovenston and J. R. Walls, J. Phys. D Appl. Phys. 18 (1985) 1859.CrossRefGoogle Scholar
  15. 15.
    M. L. Post and G. Pleizier, J. Solid State Chem. 107 (1993) 166.CrossRefGoogle Scholar
  16. 16.
    M. W. Shin, T. M. Hare, A. I. Kingon and C. C. Koch, J. Mater. Res. 6 (1991) 2026.CrossRefGoogle Scholar
  17. 17.
    S. R. Su, M. O'Connor and M. Levinson, ibid. 6 (1991) 244.CrossRefGoogle Scholar
  18. 18.
    A. I. Kingon, C. D. Davis, T. M. Hare, H. Palmour III, C. C. Koch and D. G. Haase, in “Proceedings of the Materials Research Society Symposium”, 169 (Materials Research Society, 1990).Google Scholar
  19. 19.
    T. Aselage and K. Keefer, J. Mater. Res. 3 (1988) 1279.CrossRefGoogle Scholar
  20. 20.
    P. V. L. N. Siva Prasad, M. A. Jaleel, K. Bhupal Reddy and V. N. Mulay, J. Mater. Sci. Lett. 9 (1990) 956.CrossRefGoogle Scholar
  21. 21.
    N. P. Bansal, J. Mater. Res. 3 (1988) 1304.CrossRefGoogle Scholar
  22. 22.
    J. Nowotny, M. Rekasand W. Weppner, J. Am. Ceram. Soc. 73 (1990) 1040.CrossRefGoogle Scholar
  23. 23.
    X. Huang, L. Chen, Y. Huang and T. Hui, Solid State Ionics 40–41 (1990) 807.CrossRefGoogle Scholar
  24. 24.
    T. Matsui, T. Fujita, K. Naito and T. Takeshita, J. Solid State Chem. 88 (1990) 579.CrossRefGoogle Scholar
  25. 25.
    Y. Yan, M-G. Blanchin, C. Picard and P. Gerdanian, J. Mater. Chem. 3 (1993) 603.CrossRefGoogle Scholar
  26. 26.
    W. Carrillo-Cabrera, H. D. Wiemhöfer and W. Göpel, Solid State Ionics 32–33 (1989) 1172.CrossRefGoogle Scholar
  27. 27.
    J. Nowotny and M. Rekas, J. Am. Ceram. Soc. 73 (1990) 1054.CrossRefGoogle Scholar
  28. 28.
    M-Y. Su, C-E. Elsbernd and T. O. Mason, ibid. 73 (1990) 415.CrossRefGoogle Scholar
  29. 29.
    J. Molenda, A. Stoklosa and T. Bak, Phys. C 175 (1991) 555.CrossRefGoogle Scholar
  30. 30.
    G. Elschner, W. Becker, H. D. Wiemhöfer and W. Göpel, Solid State Ionics 32–33 (1992) 401.Google Scholar
  31. 31.
    H. L. Tuller and E. Opila, ibid. 40–41 (1990) 790.CrossRefGoogle Scholar
  32. 32.
    J. MacManus, D. Fray and J. Evetts, Phys. C 190 (1992) 511.CrossRefGoogle Scholar
  33. 33.
    J. Tartaj, C. Moure, P. Duran, J. L. Garcia-Fierro and J. Colino, J. Mater. Sci. 26 (1991) 6135.CrossRefGoogle Scholar
  34. 34.
    J. Lin, T. S. Wee, A. C. H. Huan, K. L. Tan and K. G. Neoh, J. Vac. Sci. Technol. A 12 (1994) 2074.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. Ovenston
    • 1
  • D. Qin
    • 1
  • L. Shields
    • 1
    • 2
  • J. R. Walls
    • 1
  1. 1.Department of Chemical EngineeringUniversity of BradfordWest YorkshireUK
  2. 2.Department of Chemistry and Chemical TechnologyUniversity of BradfordWest YorkshireUK

Personalised recommendations