Advertisement

Journal of Materials Science

, Volume 30, Issue 21, pp 5399–5404 | Cite as

Processing and microstructure of porous and dense PZT thick films on Al2O3

  • J. F. Fernandez
  • E. Nieto
  • C. Moure
  • P. Duran
  • R. E. Newnham
Papers

Abstract

The processing of porous PZT thick-film ceramics on Al2O3 has been studied. The films were screen-printed from a thixotropic ink of PZT with a 58% solids content. The thick films were sintered between 1000 and 1150°C for 2 h. The sintered films show a 10 μm thickness and an average pore diameter ranging from 1–2 μm. The PZT forms a continuous skeleton that can be filled with the desired polymer. Dense and continuous PZT films were fabricated by screen-printing PZT ink on previously electroded Al2O3 substrates with Ag/Pd 70/30 paste. Densification of the PZT was obtained by sintering near the liquidus temperature of the Ag-Pd system.

Keywords

Microstructure Al2O3 Pore Diameter Material Processing Solid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Newnham, D. P. Skinner and L. E. Cross, Mater. Res. Bull. 13 (1978) 525.CrossRefGoogle Scholar
  2. 2.
    D. P. Skinner, R. E. Newnham and L. E. Cross, ibid. 13 (1978) 599.CrossRefGoogle Scholar
  3. 3.
    T. R. Shrout, W. A. Schulze and J. V. Biggers, ibid. 14 (1979) 1553.CrossRefGoogle Scholar
  4. 4.
    T. Hayashi, S. Sugahara and K. Okazaki, Jpn J. Appl. Phys. 30 (9B) (1991) 2243.CrossRefGoogle Scholar
  5. 5.
    D. J. Waller, A. Safari and R. J. Card, in “Proceedings of the IEEE International Symposium on Applications on Ferroelectrics 1990”, edited by S. B. Krupanidhi and S. K. Kurtz (IEEE, Inc., Piscataway, NJ, 1991) pp. 82–5.CrossRefGoogle Scholar
  6. 6.
    K. H. Yoon and M. J. Lee, Ferroelectrics 119 (1991) 53.CrossRefGoogle Scholar
  7. 7.
    E. Nieto, J. F. Fernandez, C. Moure and P. Duran, J. Mater Sci. (1995) in press.Google Scholar
  8. 8.
    T. Chartier, E. Jorge and P. Boch, J. Phys. III (1991) 689.Google Scholar
  9. 9.
    W. F. M. Groot Zevert, A. J. A. Winnubst, G. S. A. Theunissen and A. J. Burgraaf, J. Mater. Sci. 25 (1990) 3449.CrossRefGoogle Scholar
  10. 10.
    S. K. Saha, D. C. Agrawal, Am. Ceram. Soc. Bull. 71 (1992) 1424.Google Scholar
  11. 11.
    W. Wersing, K. Lubitz and J. Mohaupt, Ferroelectrics 68 (1986) 77.CrossRefGoogle Scholar
  12. 12.
    T. Ota, J. Takahashi and I. Yamai, in “Electronic Ceramic Materials”, edited by J. Nowotny (Trans. Tech, Brookfield VT, USA, 1992) 229.Google Scholar
  13. 13.
    P. Duran, J. Tartaj, J. F. Fernandez and C. Moure, Ferroelectrics 128 (1992) 231.CrossRefGoogle Scholar
  14. 14.
    J. Collier, I. A. Cornejo and M. J. Haun, ibid. 154 (1994) 57.CrossRefGoogle Scholar
  15. 15.
    Y. D. Kim, S. M. Landin, I. A. Cornejo and M. J. Haun, in “Proceedings of the IEEE International Symposium on Application on Ferroelectrics 1994”, edited by R. K. Pandey, S. T. Liu and A. Safari (IEEE Inc., Piscataway, NJ, 1995) in press.Google Scholar
  16. 16.
    M. H. Slayton and H. S. N. Setty, in “Proceedings of the IEEE International Symposium on Application on Ferroelectrics 1990”, edited by S. B. Krupanidhi and S. K. Kurtz (IEEE Inc., Piscataway, NJ, 1991) pp. 90–2.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. F. Fernandez
    • 1
  • E. Nieto
    • 1
  • C. Moure
    • 1
  • P. Duran
    • 1
  • R. E. Newnham
    • 2
  1. 1.Electroceramics Department, Instituto de Ceramica y VidrioCSICMadridSpain
  2. 2.Materials Research LaboratoryPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations