Advertisement

Journal of Materials Science

, Volume 30, Issue 21, pp 5381–5388 | Cite as

The electrochemical properties of Li3AlN2 and Li2SiN2

  • M. S. Bhamra
  • D. J. Fray
Papers

Abstract

Lithium ion-conducting solid electrolytes Li3AlN2 and Li2SiN2 were investigated as possible electrolytes for nitrogen sensors. The nitride ceramics were synthesized and characterized by SEM, X-ray diffraction and a.c. impedance. Thermodynamic measurements were carried out by measuring cell electromotive forces (e.m.f.s) consisting of solid electrolyte tubes sandwiched between Cr/Cr2N and CrN/Cr2N references. The results corresponded to the values given in the literature for this system.

Keywords

Nitrogen Polymer Lithium Nitride Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. B. Morrison, Ironmaking Steelmaking 16 (2)(1975) 123.Google Scholar
  2. 2.
    R. S. Young, “Chemical Analysis in Extractive Metallurgy” (Charles Criffin, London, 1971) pp. 251–7.Google Scholar
  3. 3.
    T. S. Harrison, “Handbook of Analytical Control of Iron and Steel Production” (Ellis Horwood, Chichester, 1979) pp. 280–374.Google Scholar
  4. 4.
    D. L. Harris, “Quantitative Chemical Analysis” (Freeman, New York, 1987).Google Scholar
  5. 5.
    K. S. Goto, “Solid State Electrochemistry and its Applications to Sensors and Electronic Devices” (Elsevier, Amsterdam, 1988).Google Scholar
  6. 6.
    A. Rabenau, Festkorperprobleme XVIII (1978) 77.Google Scholar
  7. 7.
    Idem, Solid State Ionics 6 (1982) 277.CrossRefGoogle Scholar
  8. 8.
    R. Juza and F. Hund Z. Anorg. Allg. Chem. 257 (1948) 13.CrossRefGoogle Scholar
  9. 9.
    H. Yamane, S. Kikkawa and M. Koizumi, Solid State Ionics 15 (1985) 51.CrossRefGoogle Scholar
  10. 10.
    R. Juza, H. H. Weber and E. Meyer-Shimon, Z. Anorg. Allg. Chem. 273 (1948) 48.CrossRefGoogle Scholar
  11. 11.
    J. Lang and J. P. Charlot Rev. Chim. Miner. 7 (1970) 121.Google Scholar
  12. 12.
    A. T. Dadd, and P. Hubberstey, J. Chem. Soc. Dalt. Trans. (1982) 2175.Google Scholar
  13. 13.
    J. David, J. P. Charlot, and J. Lang Rev. Chim. Miner. 2 (1974) 405.Google Scholar
  14. 14.
    H. Yamane, S. Kikkawa and M. Koizumi, Solid State Ionics 25 (1987) 183.CrossRefGoogle Scholar
  15. 15.
    T. Mills, J. Less Common Metals 22 (1970) 373.CrossRefGoogle Scholar
  16. 16.
    Idem, ibid. 26 (1972) 223.CrossRefGoogle Scholar
  17. 17.
    C. E. Wicks, and F. E. Block, Bull. Bur. Mines 65 (1963) 82.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. S. Bhamra
    • 1
  • D. J. Fray
    • 2
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Department of Mining and Mineral EngineeringUniversity of LeedsLeedsUK

Personalised recommendations