Journal of Materials Science

, Volume 30, Issue 21, pp 5328–5334 | Cite as

The yield behaviour of poly(phenylenebibenzimidazole)

  • J. Rose
  • R. A. Duckett
  • I. M. Ward


The compressive yield behaviour of poly(2,2′-m-phenylene-5,5′-bibenzimidazole) (PBI) has been studied over a wide range of temperatures. The tensile behaviour was also studied under superimposed hydrostatic pressure. In both cases wet and dry samples were examined and the results revealed the considerable effects of moisture on the mechanical properties of PBI. The results of all these tests show that PBI has a remarkably high shear yield stress at room temperature. This results in a very high compressive yield stress and a very high tensile yield stress observed under superimposed hydrostatic pressure when brittle failure from surface flaws is prevented. It is concluded on the basis of quantitative analysis that the yield mechanism in PBI at room temperature is initiation controlled, as in a metal or ceramic, rather than a velocity controlled, thermally activated, viscoelastic process which is generally considered applicable in polymers.


Polymer Brittle Hydrostatic Pressure Material Processing High Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. J. Powers and G. A. Serad, in “High Performance Polymers: Their Origin and Development”, edited by R. B. Seymour and G. S. Kirshenbaum (Elsevier Applied Science, New York, 1986) p. 355.CrossRefGoogle Scholar
  2. 2.
    A. Buckley, D. E. Stuetz and G. A. Serad, in “Encyclopedia of Polymer Science and Engineering” Vol. 11 (Wiley, New York, 1988) p. 572.Google Scholar
  3. 3.
    J. A. Brydson, “Plastics Materials”, 5th Edn (Butterworths, 1989) p. 4867.Google Scholar
  4. 4.
    ASTM D 695 M — 85 (American Society for Testing and Materials, Philadelphia, PA, 1985).Google Scholar
  5. 5.
    R. A. Duckett, J. Mater. Sci. 15 (1980) 2471.CrossRefGoogle Scholar
  6. 6.
    J. Sweeney, R. A. Duckett and I. M. Ward, Proc. R. Soc. Lond. A420 (1988) 53.CrossRefGoogle Scholar
  7. 7.
    I. M. Ward, “Mechanical Properties of Solid Polymers”, 2nd Edn, (Wiley, Chichester, 1983) p. 377.Google Scholar
  8. 8.
    P. B. Bowden and S. Raha, Philos. Mag. 29 (1974) 149.CrossRefGoogle Scholar
  9. 9.
    A. S. Argon, ibid. 28 (1973) 839.CrossRefGoogle Scholar
  10. 10.
    R. W. Truss, P. D. Clarke, R. A. Duckett and I. M. Ward, J. Polym. Sci. Polym. Phys. Edn 22 (1984) 191.CrossRefGoogle Scholar
  11. 11.
    C. Bauwens-Crowet, J. A. Bauwens and G. Homès, J. Polym. Sci. A2(7) (1969) 735.Google Scholar
  12. 12.
    A. S. Argon and M. I. Bessonov, Philos. Mag. 35 (1977) 917.CrossRefGoogle Scholar
  13. 13.
    M. G. Northolt, J. Mater. Sci. 16 (1981) 2025.CrossRefGoogle Scholar
  14. 14.
    D. W. Van Krevelen, “Properties of Polymers”, 3rd Edn (Elsevier Applied Science, Amsterdam, 1990) p. 129ff.Google Scholar
  15. 15.
    N. W. Brooks, R. A. Duckett, J. Rose and I. M. Ward, Polymer 34 (1993) 4038.CrossRefGoogle Scholar
  16. 16.
    R. B. Goswell and H. H. Levine, J. Macro. Sci. Chem. A3 (1969) 1381.CrossRefGoogle Scholar
  17. 17.
    R. Lovell and A. H. Windle, Polymer 22 (1982) 175.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Rose
    • 1
  • R. A. Duckett
    • 1
  • I. M. Ward
    • 1
  1. 1.IRC in Polymer Science and TechnologyUniversity of LeedsLeedsUK

Personalised recommendations