Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 1127–1134 | Cite as

The Young's moduli of in situ Ti/TiB composites obtained by rapid solidification processing

  • Z. Fan
  • A. P. Miodownik
  • L. Chandrasekaran
  • M. Ward-Close
Papers

Abstract

In situ Ti/TiB composites (Ti-6Al-4V matrix reinforced with TiB phase) with different volume fractions of the TiB phase, have been produced by consolidation of rapidly solidified Ti-6Al-4V alloys with different levels of boron addition. The microstructural examination of such composites shows that the reinforcing phase has a fine grain size and a uniform distribution throughout the matrix. The Young's moduli of the in situ composites have been determined experimentally to study the strengthening effect of the TiB phase. It was found that the Young's modulus of an in situ composite with 10 vol % TiB phase can be increased to 140 GPa, compared to 116.7 GPa for the matrix alloy. The theoretical predictions are in good agreement with the present experimental results and other results of similar composites obtained by the reactive sintering technique.

Keywords

Polymer Grain Size Boron Uniform Distribution Theoretical Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kelly and G. J. Davies Met. Rev. 10 (1965) 1.CrossRefGoogle Scholar
  2. 2.
    D. Cratchley, ibid. 10 (1965) 79.CrossRefGoogle Scholar
  3. 3.
    A. Mortensen and I. Jin, Int. Met. Rev. 37 (1991) 122.Google Scholar
  4. 4.
    A. Mortensen, J. A. Cornie and M. C. Flemings, J. Metals February 40 (1988) 12.Google Scholar
  5. 5.
    P. J. Withers, PhD thesis, University of Cambridge (1988).Google Scholar
  6. 6.
    P. R. Smith and F. H. Froes, J. Metals March 36 (1984) 19.Google Scholar
  7. 7.
    C. G. Rhodes, in “Titanium Science and Technology”, Vol. 3, edited by G. Lutjering et al. Deutsche Gesellschaft Fur Metallkunde, Oberursel (1985) p. 2209.Google Scholar
  8. 8.
    C. G. Rhodes and R. A. Spurling, in “Recent Advances in Composites in USA and Japan”, ASTM STP 864, edited by J. R. Vinson and M. Yaya (American Society for Testing and Materials, Philadelphia, PA, 1985) p. 585.Google Scholar
  9. 9.
    C. G. Levi, G. J. Abbaschian and R. Mehrabian, Met. Trans. 9A (1978) 697.CrossRefGoogle Scholar
  10. 10.
    B. F. Quigley, G. J. Abbaschian, R. Wunderlin and R. Mehrabian, ibid. 13A (1982) 93.CrossRefGoogle Scholar
  11. 11.
    A. P. Divecha, S. G. Fishman and S. D. Barmacha, J. Metals September 33 (1981) 12.Google Scholar
  12. 12.
    F. H. Froes and J. R. Pickens, ibid. 36 (1984) 14.Google Scholar
  13. 13.
    T. W. Clyne and M. G. Bader in “Proceedings of ICCMV”, edited by W. C. Harrigan, J. Strife and A. K. Dhingra (TMS-AIME, Warrendale, PA, 1985) p. 755.Google Scholar
  14. 14.
    J. A. Cornie, A. Mortersen, M. A. Gungor and M. C. Flemings, ibid. “ p. 809.Google Scholar
  15. 15.
    T. W. Clyne and J. F. Mason, Met. Trans. 15A (1987) 1519.CrossRefGoogle Scholar
  16. 16.
    T. Namai, Y. Osawa and M. Kikuchi, Imono, J. Jpn Foundrymen's Soc. 56 (1984) 604.Google Scholar
  17. 17.
    T. C. Willis, J. White, R. M. Jordan and I. R. Hughes, in “Solidification Processing 1987” (Institute of Metals, London, 1988) p. 476.Google Scholar
  18. 18.
    Y. Tsunekawa, M. Okumiya, I. Nimi and K. Okamura J. Mater. Sci. Lett. 6 (1987) 191.CrossRefGoogle Scholar
  19. 19.
    M. R. Jackson and R. L. Mehan, in “Proceedings of ICCM-VI”, edited by N. C. R. Buskell, J. M. Hodginson and J. Morton (Elsevier, Applied Science, London, 1987) p. 2431.Google Scholar
  20. 20.
    M. J. Koczak and K. S. Kurmar, US Pat. 4808372 (1989).Google Scholar
  21. 21.
    C. Suryanarayana and F. H. Froes, Int. Met. Rev. 36 (1991) 85.CrossRefGoogle Scholar
  22. 22.
    S. H. Whang, J. Met. Sci. 21 (1986) 2224.CrossRefGoogle Scholar
  23. 23.
    S. M. L. Sastry, T. C. Peng and R. J. Lederich, in “Mechanical Behaviour of Rapidly Solidified Materials”, edited by S. M. L. Sastry and B. A. MacDonald, (The Metalurgical Society of AIME, Warrendale, PA 1986) p. 207.Google Scholar
  24. 24.
    Z. Fan, P. Tsakiropoulos and A. P. Miodownik, Mater. Sci. Tech. 8 (1992) 922.CrossRefGoogle Scholar
  25. 25.
    C. R. Brooks (ed.), “Heat Treatment, Structure and Properties of Nonferrous Alloys” (ASM, Metals Parks, Ohio, USA, 1982) p. 329.Google Scholar
  26. 26.
    L. Chandrasekaran, unpublished research work (1992).Google Scholar
  27. 27.
    A. I. Kahveci and G. E. Welsch, Scripta Metall. 20 (1986) 1287.CrossRefGoogle Scholar
  28. 28.
    J. Murray (ed.), “Phase Diagrams of Binary Titanium Alloys” (ASM, Metals Park, Ohio, USA, 1987) p. 33.Google Scholar
  29. 29.
    Z. Fan, PhD thesis, University of Surrey, Guildford, UK (1993).Google Scholar
  30. 30.
    G. V. Samsonov and Y. S. Umanskiy, “Hard Compounds of Refractory Metals”, Technical Translation TT-F-12, National Aeronautics and Space Administration, June 1962.Google Scholar
  31. 31.
    Y. T. Lee, M. Peters and G. Welsch, Met. Trans. 22A (1991) 709.CrossRefGoogle Scholar
  32. 32.
    T. Saito and T. Furuta, private communication (1992).Google Scholar
  33. 33.
    Z. Fan, A. P. Miodownik and P. Tsakiropoulos, Mater. Sci. Technol., in press.Google Scholar
  34. 34.
    O. B. Pedersen, ZAMM 58 (1978) 227.Google Scholar
  35. 35.
    O. B. Pedersen, Acta Metall. 31 (1983) 1795.CrossRefGoogle Scholar
  36. 36.
    A. P. Miodownik, private communication (1992).Google Scholar
  37. 37.
    S. M. Lang, “Properties of High Temperature Ceramics and Cermets: Elasticity and Density at Room Temperature”, NBS Monograph 6, 1, March 1960 (National Bureau of Standards, Washington, DC, 1960).CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Z. Fan
    • 1
  • A. P. Miodownik
    • 1
  • L. Chandrasekaran
    • 2
  • M. Ward-Close
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of SurreyGuildfordUK
  2. 2.Materials and Structures DepartmentDefence Research AgencyFarnboroughUK

Personalised recommendations