Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 1115–1120 | Cite as

The dependence of the strength of zinc sulphide on temperature and environment

  • C. S. J. Pickles
  • J. E. Field
Papers

Abstract

The dependence of the strength of zinc sulphide on temperature, environment, surface finish and specimen size has been assessed. Room-temperature fracture stresses were determined using a bursting disc geometry for a number of different surface finishes and for two different sample sizes. High and low-temperature fracture stresses in a dry nitrogen atmosphere were obtained from experiments using the Brazilian test geometry and showed that the average strength of the material remained above or equal to the room-temperature value within the range −70 to +600 °C. The Brazilian test is an indirect tensile technique which is attractive for its experimental simplicity but gives fracture stress values which are consistently below those obtained by direct tensile techniques. The data from this test were therefore compared at room temperature to results obtained from the bursting disc test on samples which had been prepared using the same techniques. The possibility of delayed failure through environmentally enhanced slow crack growth was evaluated using the double-torsion technique which revealed slow crack growth below the critical stress intensity factor.

Keywords

Stress Intensity Intensity Factor Stress Intensity Factor Fracture Stress Surface Finish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Wiederhorn, J. Am. Ceram. Soc. 59 (1967) 407.CrossRefGoogle Scholar
  2. 2.
    S. M. Wiederhorn, A. G. Evans, E. R. Fuller and H. Johnson, ibid. 57 (1974) 319.CrossRefGoogle Scholar
  3. 3.
    A. G. Evans, J. Mater. Sci. 7 (1972) 1137.CrossRefGoogle Scholar
  4. 4.
    J. B. Wachtman, J. Am. Ceram. Soc. 57 (1974) 509.CrossRefGoogle Scholar
  5. 5.
    T. A. Michalske and B. C. Bunker, Sci. Am. December (1987) 78.Google Scholar
  6. 6.
    S. Van Der Zwaag, J. T. Hagan and J. E. Field, J. Mater. Sci. 15 (1980) 2965.CrossRefGoogle Scholar
  7. 7.
    S. Van Der Zwaag and J. E. Field, ibid. 17 (1982) 2625.CrossRefGoogle Scholar
  8. 8.
    D. Townsend and J. E. Field, ibid. 25 (1990) 1347.CrossRefGoogle Scholar
  9. 9.
    S. Van Der Zwaag and J. E. Field, Eng. Fract. Mech. 17 (1983) 367.CrossRefGoogle Scholar
  10. 10.
    C. R. Seward, C. S. J. Pickles, R. Marrah and J. E. Field, in “SPIE proceedings 1760”, San Diego, July 1992 edited by P. Klocek (International Society for Optical Engineering, P.O. Box 10, Bellington, Washington, USA).Google Scholar
  11. 11.
    M. J. Matthewson and J. E. Field, J. Phys. E 13 (1980) 355.CrossRefGoogle Scholar
  12. 12.
    E. R. Fuller Jr, “Fracture mechanics Applied to Brittle Materials” ASTM STP 678 edited by S. W. Freiman (American Society for Testing and Materials, Philadelphia, PA, 1979) p. 3.CrossRefGoogle Scholar
  13. 13.
    B. J. Pletka, E. R. Fuller Jr and B. G. Koepke, ibid.in “, p. 19.CrossRefGoogle Scholar
  14. 14.
    R. B. Tait, P. R. Fry and G. G. Garrett, Exp. Mech. March (1987) 14.Google Scholar
  15. 15.
    T. A. Michalske, M. Singh and V. D. Frechette, “Fracture Mechanics Methods for Ceramics, Rocks and Concrete”, ASTM STP 745 (American Society for Testing and Materials, Philadelphia, PA, 1981) p. 3.CrossRefGoogle Scholar
  16. 16.
    G. D. Quinn, J. Mater. Sci. 22 (1987) 2309.CrossRefGoogle Scholar
  17. 17.
    F. L. L. E. Carneiro and A. Barcellos, Bull. RILEM 13 (1953) 97.Google Scholar
  18. 18.
    G. Hondros, Aust. J. Appl. Sci. 10 (1959) 243.Google Scholar
  19. 19.
    H. Awaji and S. Sato, J. Eng. Mater. Tech. 101 April (1979) 1347.CrossRefGoogle Scholar
  20. 20.
    B. W. Darvell, J. Mater. Sci. 25 (1990) 757.CrossRefGoogle Scholar
  21. 21.
    A. Rudnick, A. R. Hunter and F. C. Holden, Mater. Res. Stand. 3 April (1963) 283.Google Scholar
  22. 22.
    R. J. Hand, PhD thesis, University of Cambridge (1987).Google Scholar
  23. 23.
    F. P. Bowden and J. H. Brunton, Proc. Roy. Soc. Lond. A263 (1961) 433.Google Scholar
  24. 24.
    F. P. Bowden and J. E. Field, ibid. A282 (1964) 331.Google Scholar
  25. 25.
    C. R. Seward, C. S. J. Pickles and J. E. Field, in “SPIE proceedings 1326”, San Diego, July 1990, edited by P. Klocek (International Society for Optical Engineering, P.O. Box 10, Bellington, Washington, USA) p. 280.Google Scholar
  26. 26.
    J. A. Savage, “Infrared Optical Materials and their Antireflection Coatings” (Adam Hilger, Bristol, 1985).Google Scholar
  27. 27.
    R. W. Schwartz, in “Third Workshop on Passive Infrared Optical Materials and Coatings,” Brussels, Paper 4, NATO Brussels, Belgium March 1990, edited by J. A. Savage, unpublished.Google Scholar
  28. 28.
    A. A. Deom, D. L. Balageas, F. G. Laturelle, G. D. Gardette and G. J. Freydefont, in “SPIE proceedings 1326”, San Diego, July 1990, edited by P. Klocek (International Society for Optical Engineering, P.O. Box 10, Bellington, Washington, USA) p. 301.Google Scholar
  29. 29.
    G. M. Prabhu, D. L. Ulrichson and A. H. Pulsifer, Ind. Eng. Chem. Fundam. 23 (1984) 271.CrossRefGoogle Scholar
  30. 30.
    R. W. Davidge, “Mechanical Behaviour of Ceramics” (Cambridge University Press, 1979).Google Scholar
  31. 31.
    N. Shinkai, R. C. Bradt and G. E. Rindone, J. Am. Ceram. Soc. 64 (1981) 426.CrossRefGoogle Scholar
  32. 32.
    L. A. Xue and R. Raj, ibid. 72 (1989) 1792.CrossRefGoogle Scholar
  33. 33.
    K. Ikeda, H. Igaki, Y. Tanigawa and K. Tagashira, ibid. 73 (1990) 2114.CrossRefGoogle Scholar
  34. 34.
    W. Han and M. Tomozawa, ibid. 72 (1989) 1837.CrossRefGoogle Scholar
  35. 35.
    K. Hirao and M. Tomozawa, ibid. 70 (1987) 43.CrossRefGoogle Scholar
  36. 36.
    D. Brion, Appl. Surf. Sci. 5 (1980) 133.CrossRefGoogle Scholar
  37. 37.
    H. Y. Sohn and K. Daesoo, Metall. Trans. B 18 (2) (1987) 451.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. S. J. Pickles
    • 1
  • J. E. Field
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations