Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 1075–1082 | Cite as

Thermal treatment effects in SiC/Al metal matrix composites

  • S. J. Swindlehurst
  • I. W. Hall
Papers

Abstract

A short-fibre-reinforced SiC/Al-7% Si-0.6% Mg composite has been subjected to thermal cycling and elevated temperature isothermal exposure treatments. The microstructure and residual mechanical properties have been determined as a function of these treatments. It was found that isothermal or cycling treatment at 350 °C caused severe room-temperature strength degradation while treatment at 525 °C caused little change. Strength changes are attributed principally to precipitation and dissolution effects and to transfer of magnesium from the matrix into the fibre/matrix interfacial reaction layer. There was no evidence of mechanical damage resulting from the cycling treatments.

Keywords

Microstructure Magnesium Thermal Treatment Thermal Cycling Matrix Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. H. Andersson, PhD dissertation, Chalmers University of Technology, Sweden (1983).Google Scholar
  2. 2.
    P. Fortier, PhD dissertation, Université Claude Bernard-Lyon I, France (1988).Google Scholar
  3. 3.
    G. Selvaduray, R. Hickman, D. Quinn, D. Richard and D. Rowland, in “Interfaces in Metal Ceramic Composites”, edited by R. Y. Lin, R.J. Arsenault, G. P. Martins and S. G. Fishman (TMS, Philadelphia, PA, 1986) p. 271.Google Scholar
  4. 4.
    C. Milliere, PhD dissertation, Institut National Polytechnique de Grenoble (1986).Google Scholar
  5. 5.
    J. G. Legoux, L. Salvo, H. Ribes, G. L. L'Espérance and M. Suéry, in “Interfaces in Metal-Ceramic Composites”, edited by R. Y. Lin, R.J. Arsenault, G. P. Martins and S. G. Fishman (TMS, Philadelphia, PA, 1986) p. 187.Google Scholar
  6. 6.
    D. Lloyd, Compos. Sci. Technol. 35 (1989) 159.CrossRefGoogle Scholar
  7. 7.
    A. Bardal and R. Høier, in “Metal Matrix Composites—Processing, Microstructure and Properties”, Procedings of the 12th Risø International Symposium on Material Science, edited by N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A. S. Pedersen, O. B. Pedersen and B. Ralph (Risø National Laboratory, Roskilde, 1991) p. 205.Google Scholar
  8. 8.
    A. Standage and M. S. Gani, J. Am. Ceram. Soc. 50 (1967) 101.CrossRefGoogle Scholar
  9. 9.
    K. Prabriputaloong and M. R. Piggot, ibid. 56 (1973) 184.CrossRefGoogle Scholar
  10. 10.
    Idem, J. Electrochem. Soc. Solid State Sci. Technol. 127 (1974) 430.Google Scholar
  11. 11.
    R. Dasilva, D. Caldemaison and T. Bretheau, in “Mechanics and Mechanisms of Damage in Composites and Multi-Media Materials”, ESIS-11, edited by D. Baptiste (Mechanical Engineering Publications, London 1991) p. 395.Google Scholar
  12. 12.
    H. Ribes, M. Suéry, G. L'Espérence and J. G. Legoux, Metall. Trans. 21A (1990) 2489.CrossRefGoogle Scholar
  13. 13.
    C. M. Friend, R. Young and I. Horsfall, in Proceedings of ECCM 1: Developments in Science and Technology of Composite Materials, edited by A. R. Bunsell, P. Lamicq and A. Massiah (AEMC and CODEMAC, Bordeaux, 1985) p. 227.Google Scholar
  14. 14.
    H. Ribes and M. Suéry, Scripta Metall. 23 (1989) 705.CrossRefGoogle Scholar
  15. 15.
    C. Levi, G. Abbaschian and R. Mehrabian, Metall. Trans. 9A (1978) 697.CrossRefGoogle Scholar
  16. 16.
    B. F. Quigley, G. J. Abbaschian, R. Wunderlin and R. Mehrabian, ibid. 13A (1982) 93.CrossRefGoogle Scholar
  17. 17.
    A. D. McLeod and C. M. Gabryel, ibid. 23A (1992) 1279.CrossRefGoogle Scholar
  18. 18.
    A. Munitz, M. Metzger and R. Mehrabian, ibid. 10A (1979) 1496.Google Scholar
  19. 19.
    K. Suganuma, T. Okamoto, T. Hayami, Y. Oku and N. Suzuki, J. Mater. Sci. 23 (1988) 1318.CrossRefGoogle Scholar
  20. 20.
    C.-F. Horng, S.-J. Lin and K.-S. Liu, Mater. Sci. Eng. A150 (1992) 290.Google Scholar
  21. 21.
    B. C. Pai, ibid. 24 (1976) 31.CrossRefGoogle Scholar
  22. 22.
    R. A. Page, J. E. Hack, R. Sherman and G. R. Leverant, Metall. Trans. 15A (1984) 1403.Google Scholar
  23. 23.
    H. V. Squires and H. W. Rayson, J. Mater. Sci. 12 (1977) 1010.CrossRefGoogle Scholar
  24. 24.
    S. Murali, K. S. Raman and K. S. S. Murthy, Mater. Sci. Eng. A151 (1992) 1.CrossRefGoogle Scholar
  25. 25.
    N. Han, G. Pollard and R. Stevens, Mater. Sci. Technol. 8 (1992) 52.Google Scholar
  26. 26.
    M. Vedani, G. Piatti and C. Digregorio, in “Mechanics and Mechanisms of Damage in Composites and Multi-Media Materials”, ESIS11, edited by D. Baptiste (Mechanical Engineering Publications, London, 1991) p. 407.Google Scholar
  27. 27.
    M. Gupta et al., in “Fundamental Relations Between Microstructures and Mechanical Properties of Metal Matrix Composites”, Proceedings of the Symposium TMS 1990 Fall Meeting, edited by P. K. Liaw and M. N. Gungor (TMS, Warrendale, PA, 1990) p. 3.Google Scholar
  28. 28.
    F. Girot, PhD dissertation, Université de Bordeaux I, France (1987).Google Scholar
  29. 29.
    “Standard Test Methods for Tensile Properties of Metal Matrix Composites”, Vol. 10. Annual Book of ASTM Standards (ASTM, Philadelphia, PA, 1982).Google Scholar
  30. 30.
    J. M. Ritchie, J. V. Sanders and P. L. Welckhardt, Oxid. Metals 3 (1971) 91.CrossRefGoogle Scholar
  31. 31.
    C. M. Friend, J. Mater. Sci. 22 (1987) 3005.CrossRefGoogle Scholar
  32. 32.
    M. Manoharan and J. J. Lewandowski, Mater. Sci. Eng. A150 (1992) 183.Google Scholar
  33. 33.
    F. J. Humphreys, in “Mechanical and Physical Behavior of Metallic and Ceramic Composites”, edited by S. I. Anderson, A. Lilholt and O. B. Pedersen (Risø National Laboratory, Roskilde, 1988) p. 51.Google Scholar
  34. 34.
    I. W. Hall and W. G. Patterson, Scripta Metall. Mater. 24 (1991) 805.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. J. Swindlehurst
    • 1
  • I. W. Hall
    • 1
  1. 1.Materials Science ProgramUniversity of DelawareNewarkUSA

Personalised recommendations