Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 1056–1066 | Cite as

Pulse chemical vapour deposition and infiltration of pyrocarbon in model pores with rectangular cross-sections

Part II Study of the infiltration
  • P. Dupel
  • R. Pailler
  • X. Bourrat
  • R. Naslain
Papers

Abstract

Model straight pores with rectangular cross-section (size ranging from 60 to 320 μm) have been infiltrated with pyrocarbon resulting from the cracking of C3H8 or CH4 under pulse chemical vapour infiltration (P-CVI) conditions. Three main parameters control the quality of the pore infiltration: temperature and pressure, as previously known for regular CVI under isothermal/isobaric conditions (I-CVI) and, additionally, the residence time tR, which appears to be the key parameter in P-CVI. There is a direct correlation between tR, on the one hand, and both the PyC thickness gradient and anisotropy along the pores, on the other hand. The experimental results are explained on the basis of a qualitative model assuming two competing deposition mechanisms, depending on whether PyC is formed from small and H-rich molecules (akin to C3H8) (low tR values) or from large aromatic H-poor intermediates resulting from the maturation of the gas phase (high tR values). The use of CH4 (more stable thermally than C3H8) slows down the maturation process and favours in-depth infiltration. The best infiltrations, similar to and even better than those reported for I-CVI, are achieved under low tR, T, P conditions but require a very large number of pulses. P-CVI is an efficient way to control the microstructure of the deposit.

Keywords

Microstructure Anisotropy C3H8 Chemical Vapour Deposition Vapour Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Naslain and F. Langlais, in “Tailoring Multiphase and Composite Ceramics”, edited by R. E. Tressler, G. L. Messing, C. G. Pantano and R. E. Newnham, Materials Science Research Vol. 20 (Plenum, New York, 1986) p. 145.Google Scholar
  2. 2.
    R. Naslain, in “Ceramic Matrix Composites”, edited by R. Warren (Blackie, Glasgow, 1992) p. 199.Google Scholar
  3. 3.
    W. J. Lackey and T. L. Starr, in “Fiber Reinforced Ceramic Composites”, edited by K. S. Mazdiyasni (Noyes, Park Ridge, New Jersey, 1990) p. 397.Google Scholar
  4. 4.
    S. Middleman, J. Mater. Res. 4 (1989) 1515.CrossRefGoogle Scholar
  5. 5.
    Y. S. Lin, in Proceeding of 11th International Conference on CVD, Seattle, Oct. 1990, edited by K. E. Spear and G. W. Cullen (Electrochemical Society, Pennington, 1990) p. 532.Google Scholar
  6. 6.
    T. M. Besmann, R. A. Lowden, D. P. Stinton and L. L. Starr, Suppl. 5, J. physique, Colloque C5, Suppl. 5, 50 (1989) 229.Google Scholar
  7. 7.
    K. Sugiyama and T. Nakamura, J. Mater. Sci. Lett. 6 (1987) 331.CrossRefGoogle Scholar
  8. 8.
    K. Sugiyama and Y. Ohzawa, J. Mater. Sci. 25 (1990) 4511.CrossRefGoogle Scholar
  9. 9.
    S. V. Sotirchos, AIChE Jnl. 37 (1991) 1365.CrossRefGoogle Scholar
  10. 10.
    S. V. Sotirchos and M. Tomadakis, in “Chemical Vapor Deposition of Refractory Metals and Ceramics”, edited by T. M. Besmann and B. M. Gallois (MRS, Pittsburgh, 1990) p. 73Google Scholar
  11. 11.
    P. Dupel, R. Pailler and F. Langlais, J. Mater. Sci. 28 (1993) 000.Google Scholar
  12. 12.
    P. Dupel, X. Bourrat and R. Pailler, Carbon accepted.Google Scholar
  13. 13.
    C. J. Chen and M. H. Back, ibid. 17 (1979) 175.CrossRefGoogle Scholar
  14. 14.
    P. Dupel, R. Pailler, F. Langlais, R. Naslain and A. Costecalde, ibid. 17 (1979) 175, accepted.CrossRefGoogle Scholar
  15. 15.
    P. Lajzerowicz, Thèse doct-ing (numéro d'ordre 606), INPG, Grenoble (1987).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Dupel
    • 1
  • R. Pailler
    • 1
  • X. Bourrat
    • 1
  • R. Naslain
    • 1
  1. 1.Laboratoire des Composites Thermostructuraux UMR 47 CNRS-SEP-UB1Domaine UniversitairePessacFrance

Personalised recommendations