Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 1045–1050 | Cite as

Microstructure study of Sm, Mn-modified PbTiO3 piezoelectric ceramics by XRD profile-fitting technique

  • Zeng Yanwei
  • Xue Wanrong
  • A. Benedetti
  • G. Fagherazzi
Papers

Abstract

By using the X-ray diffraction profile-fitting technique, the microstructures of Sm, Mn-modified PbTiO3 piezoelectric ceramic discs, including ferroelectric domain sizes, microstrains, and their variations with the poling strength have been quantitatively investigated. The results manifest that the modified PbTiO3 ceramics contain a high density of domain walls due to the presence of finely-divided coherent domain structures (tens of nanometres in dimension). The poling treament can evidently influence the domain-size distribution, with a more homogeneous microstructure being developed; however, it simultaneously causes high anisotropic microstrains within the structure which, together with the high density of domain walls, is expected to be responsible for the unusual high electromechanical coupling properties possessed by this material.

Keywords

Microstructure Domain Wall Domain Structure Domain Size Electromechanical Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Honda, Y. Yamashita and K. Uchida, in Proceedings of IEEE Utrasonics Symposium, IEEE Press (1982) p. 845.Google Scholar
  2. 2.
    Y. Ito, H. Takeuchi, K. Nagatsuma, S. Jyomura and S. Ashida, J. Appl. Phys. 52 (1981) 3223.CrossRefGoogle Scholar
  3. 3.
    N. Ichinose, Amer. Ceram. Soc. Bull. 64 (1985) 1581.Google Scholar
  4. 4.
    Y. Yonkachi et al., Jpn J. Appl. Phys. 11 (1981) L241.Google Scholar
  5. 5.
    Y. Yamashita et al. ibid. 20 Suppl. 20/4 (1981) 183.CrossRefGoogle Scholar
  6. 6.
    Takashi et al., Ferroelectrics 54 (1984) 131.CrossRefGoogle Scholar
  7. 7.
    H. Takruchi, H. Takeuchi, S. Jyomura, E. Yamamoto and Y. Ito, J. Acoust. Soc. Amer. 72 (1982) 1114.CrossRefGoogle Scholar
  8. 8.
    W. R. Xue et al., Jpn J. Appl. Phys. 24 Suppl. 24/2 (1985) 718.CrossRefGoogle Scholar
  9. 9.
    G. Arlt and H. Dederichs, Ferroelectrics 29 (1980) 47.CrossRefGoogle Scholar
  10. 10.
    L. E. Cross et al., in Proceedings of IEEE Ultrasonics Symposium (1986) p. 637.Google Scholar
  11. 11.
    E. Fukada, Ferroelectrics 60 (1984) 285.CrossRefGoogle Scholar
  12. 12.
    T. Yamagnchi and K. Hamano, J. Phys. Soc. Jpn 50 (1981) 3956.CrossRefGoogle Scholar
  13. 13.
    J. Mendiola, M. L. Pardo and L. D. Olmo, Ferroelectrics 79 (1988) 1249.CrossRefGoogle Scholar
  14. 14.
    Y. W. Zeng, W. R. Xue and G. F. Fu, J. Mater. Sci. 26 (1991) 4293.CrossRefGoogle Scholar
  15. 15.
    B. E. Warren and B. L. Averbach, J. Appl. Phys. 21 (1950) 596.CrossRefGoogle Scholar
  16. 16.
    Idem, ibid. 23 (1952) 1059.CrossRefGoogle Scholar
  17. 17.
    S. Enzo, G. Fagherazzi and A. Benedetti, J. Appl. Crystallogr. 21 (1988) 536.CrossRefGoogle Scholar
  18. 18.
    JCPDS Power Diffraction File 6-0452.Google Scholar
  19. 19.
    R. L. Rothman and J. B. Cohen, J. Appl. Phys. 42 (1971) 971.CrossRefGoogle Scholar
  20. 20.
    B. Crist and J. B. Cohen, J. Polym. Sci. 17 (1979) 1001.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Zeng Yanwei
    • 1
  • Xue Wanrong
    • 1
  • A. Benedetti
    • 2
  • G. Fagherazzi
    • 2
  1. 1.Department of Silicates EngineeringNanjing Institute of Chemical TechnologyNanjingPeople’s Republic of China
  2. 2.Department of Physical ChemistryUniversity of VeniceVeniceItaly

Personalised recommendations