Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 1041–1044 | Cite as

Si-rich surface layer of photochemically deposited silicon nitride

  • T. Wadayama
  • H. Shibata
  • T. Kobayashi
  • A. Hatta
Papers

Abstract

The etching reaction of a photochemically deposited silicon nitride film with F2 has been observed in situ using polarization-modulation infrared spectroscopy and quadruple mass spectrometry. The infrared spectrum of the silicon nitride film before etching exhibited two bands at 1030 and 975 cm−1, arising from Si-N vibration. Exposure of the film at 423 K to F2 led to an intensity decrease of the lower-frequency band, while the higher-frequency band increased. Simultaneous mass analysis revealed that the etching products evolved into the gas phase were SiF4 and H2. However, a further admission of F2 resulted in a slight decrease in intensity of the 975 cm−1 band as well as a slight evolution of SiF4. These results strongly suggest the presence of a metastable Si-rich layer on the surface of the silicon nitride film prior to reaction with F2. Infrared measurements have also been made in the Si-H stretching region, the results of which are described and discussed.

Keywords

Mass Spectrometry Nitride Infrared Spectroscopy Infrared Spectrum Silicon Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. G. Golden, D. D. Saperstein, M. W. Severson and J. Overend, J. Phys. Chem. 88 (1984) 574.CrossRefGoogle Scholar
  2. 2.
    T. Wadayama, Y. Hanata and W. Suëtaka, Surf. Sci. 158 (1985) 579.CrossRefGoogle Scholar
  3. 3.
    T. Wadayama, W. Suëtaka and A. Sekiguchi, Jpn. J. Appl. Phys. 27 (1988) 501.CrossRefGoogle Scholar
  4. 4.
    T. Wadayama and W. Suëtaka, Surf. Sci. 218 (1989) L490.CrossRefGoogle Scholar
  5. 5.
    T. Wadayama, T. Hihara, A. Hatta and W. Suëtaka, Appl. Surf. Sci. 48/49 (1991) 409.CrossRefGoogle Scholar
  6. 6.
    A. Hatta, T. Wadayama and W. Suëtaka, Anal. Sci. 1 (1985) 403.CrossRefGoogle Scholar
  7. 7.
    T. Wadayama, H. Shibata, T. Ohtani and A. Hatta, Appl. Phys. Lett. 61 (1992) 1060.CrossRefGoogle Scholar
  8. 8.
    G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler and W. Czubatyj, Phys. Rev. B28 (1983) 3234.CrossRefGoogle Scholar
  9. 9.
    K. Hamano, Y. Numazawa and K. Yamazaki, Jpn. J. Appl. Phys. 23 (1984) 1209.CrossRefGoogle Scholar
  10. 10.
    G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler and W. Czubatyj, Phys. Rev. B29 (1984) 2302.CrossRefGoogle Scholar
  11. 11.
    S. Narikawa, Y. Kojima and S. Ehara, Jpn. J. Appl. Phys. 24 (1985) L861.CrossRefGoogle Scholar
  12. 12.
    M. Maeda and H. Nakamura, J. Appl. Phys. 58 (1985) 484.CrossRefGoogle Scholar
  13. 13.
    R. G. Greenler, R. R. Rahn and J. P. Schwarz, J. Catal. 21 (1971) 42.CrossRefGoogle Scholar
  14. 14.
    P. J. Zanzucchi, in “Semiconductors and Semimetals”, Vol. 21B, edited by J. Pankove (Academic, New York, 1984) p. 113 and references therein.Google Scholar
  15. 15.
    L. J. Bellamy, in “The Infra-red Spectra of Complex Molecules”, 3rd Edn, Vol. 1 (Chapman & Hall, London, 1975) p. 380.CrossRefGoogle Scholar
  16. 16.
    G. Lucovsky, R. J. Nemanich and J. C. Knights, Phys. Rev. B19 (1979) 2064.CrossRefGoogle Scholar
  17. 17.
    T. J. Chuang, Surf. Sci. Rept. 3(1) (1983) 77.CrossRefGoogle Scholar
  18. 18.
    H. F. Winters and F. A. Houle, J. Appl. Phys. 54 (1983) 1218.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • T. Wadayama
    • 1
  • H. Shibata
    • 1
  • T. Kobayashi
    • 1
  • A. Hatta
    • 1
  1. 1.Department of Materials Science, Faculty of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations