Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 1025–1030 | Cite as

The phase diagram of the system PBZT/ polyphosphoric acid/water

  • H. Fischer
  • J. A. Odell
  • A. Keller
  • M. Murray
Papers

Abstract

The phase diagram of the system PBZT/polyphosphoric acid/water has been investigated using differential scanning calorimetry, optical microscopy and 31P nuclear magnetic resonance spectroscopy. A peritectic line at higher temperatures and a eutectic line at lower temperatures have been found independent from the polycondensation degree of the polyphosphoric acid (PPA). The phase transitions between the different regions in the phase diagram are strongly dependent on the condensation degree of the solvent. All phase transitions are completely reversible. The formation of crystal solvate phases is connected with the water content of the system and therefore with the polycondensation reaction of the PPA. The solvent molecules are strongly associated with the macromolecules. The nematic phase is formed by interaction of six solvent molecules per monomeric unit of the polymer and proton transfer from the solvent towards the polymer in the nematic phase.

Keywords

Phase Diagram Nuclear Magnetic Resonance Differential Scanning Calorimetry Nuclear Magnetic Resonance Spectroscopy Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Cohen and E. L. Thomas, Polym. Eng. Sci. 25 (1985) 1093.CrossRefGoogle Scholar
  2. 2.
    Idem, Mol. Cryst. Liqu. Cryst. 153 (1987) 375.Google Scholar
  3. 3.
    Idem, MRS Symp. Proc. 134 (1989) 195.Google Scholar
  4. 4.
    Y. Cohen and E. L. Thomas, Macromol. 23 (1990) 4419.CrossRefGoogle Scholar
  5. 5.
    Y. Cohen, Y. Saruyama and E. L. Thomas, ibid. 24 (1991) 1161.CrossRefGoogle Scholar
  6. 6.
    Y. Cohen, S. Buchner, H. G. Zachmann and D. Davidov, Polymer 33 (1992) 3811.CrossRefGoogle Scholar
  7. 7.
    L. J. Feijo, J. A. Odell and A. Keller, Polym. Commun. 31 (1990) 42.CrossRefGoogle Scholar
  8. 8.
    D. Demus and L. Richter (eds), in “Textures of Liquid Crystals” (Verlag Chemie Weinheim, New York 1978).Google Scholar
  9. 9.
    “Gmelins Handbuch Der Anorganischen Chemie”, Volume Phosphorus, Part C, 8th Edn, (Verlag Chemie Weinheim New York) pp. 157, 166, 218–21.Google Scholar
  10. 10.
    A.-L. Huhti and P. A. Gartaganis, Canad. J. Chem. 34 (1956) 785.CrossRefGoogle Scholar
  11. 11.
    V. Mark, C. Dungau, M. Crutchfield and J. Van Wazer, in “Topics in Phosphorus Chemistry”, Vol. 5, “Compilation of 31P-NMR data” Edited by M. Grayson and E. J. Griffith (Interscience, New York, London, Sydney, 1967) p. 319.Google Scholar
  12. 12.
    P. J. Flory, Proc. R. Soc. Lond. Ser. A 234 (1956) 73.CrossRefGoogle Scholar
  13. 13.
    E. L. Wee and W. G. Miller, J. Phys. Chem., 75 (1971) 1446.CrossRefGoogle Scholar
  14. 14.
    H. Bassett, J. Chem. Soc. 55 (1958) 2949.CrossRefGoogle Scholar
  15. 15.
    D. Balarew, Z. Anorg. Chem. 67 (1910) 243.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. Fischer
    • 1
  • J. A. Odell
    • 1
  • A. Keller
    • 1
  • M. Murray
    • 2
  1. 1.H. H. Wills Physics LaboratoryUniversity of BristolBristolUK
  2. 2.School of ChemistryUniversity of BristolBristolUK

Personalised recommendations