Journal of Materials Science

, Volume 29, Issue 4, pp 999–1003 | Cite as

CO2 decomposition with mangano-wüstite

  • M. Tabata
  • H. Kato
  • T. Kodama
  • T. Yoshida
  • M. Tsuji
  • Y. Tamaura


Mn(II)-ferrite (Mn0.97Fe2.02O4.00) prepared by the wet method was reduced in a hydrogen at 300°C to form highly reactive mangano-wüstite ((Fe0.67, Mn0.32)O) for CO2 decomposition. Approximately 23% CO2 injected (3.40 mmol) was decomposed to CO by the mangano-wüstite (3.22 g) in the initial stage of the reaction in a batch system at 400°C. 88% CO was further decomposed to carbon. Approximately 58% CO2 injected was reversibly adsorbed on the surface and the remaining 12% was unchanged after 200 h reaction. The mangano-wüstite was concurrently transformed to Mn(II)-bearing ferrite (Mn0.23Fe2.77O4.00) and manganeserich mangano-wüstite ((Fe0.60, Mn0.40)O). The higher CO2 decomposition capacity for this mangano-wüstite than that for oxygen-deficient Mn(II)-ferrite is discussed in detail, based on electron hopping and movement of ions in the bulk.


Hydrogen Polymer Ferrite Material Processing Batch System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Hemminger, R. Carr and G. A. Somorjai, Chem. Phys. Lett. 57 (1978) 100.CrossRefGoogle Scholar
  2. 2.
    T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature (Lond.) 277 (1979) 637.CrossRefGoogle Scholar
  3. 3.
    Y. Hori, A. Murata and R. Takahashi, J. Chem. Soc. Faraday Trans. I 85 (1989) 2309.CrossRefGoogle Scholar
  4. 4.
    J. Hawecker, J. -M. Lehn and R. Ziessel, Helv. Chem. Acta 69 (1986) 1990.CrossRefGoogle Scholar
  5. 5.
    B. A. Parkinson and P. F. Weaver, Nature (Lond.) 309 (1984) 148.CrossRefGoogle Scholar
  6. 6.
    R. Ziessel, J. Hawecker and J.-M. Lehn, Helv. Chim. Acta 69 (1986) 1065.CrossRefGoogle Scholar
  7. 7.
    S. Ikeda, T. Takagi and K. Ito, Bull. Chem. Soc. Jpn 60 (1987) 2517.CrossRefGoogle Scholar
  8. 8.
    I. Willner and D. Mandler, J. Am. Chem. Soc. 111 (1989) 1330.CrossRefGoogle Scholar
  9. 9.
    M. Grätzel, A. J. McEvoy, K. R. Tampi and C. Revilliod, in “Proceedings of International Symposium on Chemical Fixation of Carbon Dioxide”, Nagoya, 1991, edited by K. Ito (Chemical Society of Japan, Research Group on Fixation of Carbon Dioxide, Nagoya, Japan, 1991) pp. 1–10.Google Scholar
  10. 10.
    K. Otsuka, Hyomen 23 (1985) 206.Google Scholar
  11. 11.
    M. A. Ulla, R. A. Migone, J. O. Petunchi and E. A. Lombardo, J. Catal. 105 (1987) 107.CrossRefGoogle Scholar
  12. 12.
    M.-D. Lee, J.-F. Lee and C.-S. Chang, J. Chem. Eng. Jpn 23 (1990) 130.CrossRefGoogle Scholar
  13. 13.
    R. C. Wagner, R. Carrasquillo, J. Edwards and R. Holmes, in “Proceedings of 18th Intersociety Conference on Environmental Systems”, SAE Technical Paper Series 880995 (Society of Automotive Engineers, Warrendale, PA, 1988) pp. 1–9.Google Scholar
  14. 14.
    T. Suzuki, K. Saeki, Y. Mayama, T. Hirai and S. Hayashi, React. Kinet. Catal. Lett. 44 (1991) 489.CrossRefGoogle Scholar
  15. 15.
    Gmelins Handbuch der Anorganischen Chemie”, 8th Edn, Kohlenstoff Part C2, edited by K. V. Baczko (Springer Verlag, Berlin, 1972) pp. 203.Google Scholar
  16. 16.
    R. G. Copperthwaite, P. R. Davies, M. A. Morris, M. W. Roberts and R. A. Ryder, Catal. Lett. 1 (1988) 11.CrossRefGoogle Scholar
  17. 17.
    Y. Tamaura and M. Tabata, Nature (Lond.) 346 (1990) 255.CrossRefGoogle Scholar
  18. 18.
    M. Tabata, Y. Nishida, T. Kodama, K. Mimori, T. Yoshida, and Y. Tamaura, J. Mater. Sci. 28 (1993) 971.CrossRefGoogle Scholar
  19. 19.
    M. Tabata, K. Akanuma, K. Nishizawa, K. Mimori, T. Yoshida, M. Tsuji and Y. Tamaura, ibid. CrossRefGoogle Scholar
  20. 20.
    N. K. Jaggi, L. H. Schwartz, J. B. Butt, H. Papp and M. Baerns, Appl. Catal. 13 (1985) 347.CrossRefGoogle Scholar
  21. 21.
    G. C. Maiti, R. Malessa, U. Löchner, H. Papp and M. Baerns, ibid. 16 (1985) 215.CrossRefGoogle Scholar
  22. 22.
    U. Löchner, H. Papp and M. Baerns, ibid. 23 (1986) 339.CrossRefGoogle Scholar
  23. 23.
    M. Kiyama, Bull. Chem. Soc. Jpn 51 (1978) 134.CrossRefGoogle Scholar
  24. 24.
    I. Iwasaki, T. Katsura, T. Ozawa, M. Yoshida, M. Mashima, H. Harashima and B. Iwasaki, Bull. Volcanol. Soc. Jpn Ser. II 5 (1960) 9.Google Scholar
  25. 25.
    J. T. Woods and M. G. Mellon, Ind. Eng. Chem. Anal. Ed. 13 (1941) 551.CrossRefGoogle Scholar
  26. 26.
    Powder Diffraction File, Card no. 10-319 (Joint Committee on Powder Diffraction Standard, Swarthmore, PA, 1967).Google Scholar
  27. 27.
    Powder Diffraction File, Card no. 6-615 (Joint Committee on Powder Diffraction Standard, Swarthmore, PA, 1967).Google Scholar
  28. 28.
    Powder Diffraction File, Card no. 7-230 (Joint Committee on Powder Diffraction Standard, Swarthmore, PA, 1967).Google Scholar
  29. 29.
    P. K. Foster and A. J. E. Welch, Trans. Faraday Soc. 52 (1956) 1626.CrossRefGoogle Scholar
  30. 30.
    R. P. Townsend (ed.), “The Properties and Applications of Zeolites”, Special Publications 33 (The Chemical Society, London, 1980).Google Scholar
  31. 31.
    Z. Funatogawa, N. Miyata and S. Usami, J. Phys. Soc. Jpn 14 (1959) 1583.CrossRefGoogle Scholar
  32. 32.
    C. Gohy, A. Gerand and F. Grandjean, Phys. Status Solidi. A 74 (1982) 583.CrossRefGoogle Scholar
  33. 33.
    R. Linder and Å. Åkerström, Z. Phys. Chem. N. F. 18 (1956) 303.CrossRefGoogle Scholar
  34. 34.
    K. Ando and Y. Oishi, J. Chem. Phys. 61 (1974) 625.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Tabata
    • 1
  • H. Kato
    • 1
  • T. Kodama
    • 1
  • T. Yoshida
    • 1
  • M. Tsuji
    • 1
  • Y. Tamaura
    • 1
  1. 1.Department of Chemistry, Research Centre for Carbon Recycling and UtilizationTokyo Institute of TechnologyTokyoJapan

Personalised recommendations