Journal of Materials Science

, Volume 29, Issue 4, pp 978–986 | Cite as

The extent of microcracking and the morphology of microcracks in damaged bone

  • P. Zioupos
  • J. D. Currey


Strain-induced damage in bovine laminar bone has been examined using laser scanning confocal microscopy (LSCM). The specimens were loaded in a fluorescein solution, which penetrated the newly formed cracks in the specimen. The microcracking, and the larger cracking, induced by strain were very clearly visible. The microcracking occurred diffusely in regions of high strain (stress), but was particularly obvious in the vicinity of large machined stressconcentrators. The microcracking could be shown not to be artefactual, that is, it was produced by strain, and not by specimen preparation. The microcracking interacted with the structure of the bone, often having a wavy appearance related to the histology. Microcracks seemed to be particularly associated with the most highly mineralized parts of the bone. LSCM is a technique holding great promise for the investigation of the initiation and development of damage in mineralized hard tissues, and other translucent materials.


Polymer Microscopy Fluorescein Confocal Microscopy Laser Scanning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. E. Caler and D. R. Carter J. Biomech. 22 (1989) 625.CrossRefGoogle Scholar
  2. 2.
    D. R. Carter and W. E. Caler, J. Orth. Res. 3 (1985) 84.CrossRefGoogle Scholar
  3. 3.
    J. D. Currey, J. Biomech. 22 (1989) 469.CrossRefGoogle Scholar
  4. 4.
    D. Krajcinovic, J. Trafimow and D. Sumarac, ibid. 20 (1987) 779.CrossRefGoogle Scholar
  5. 5.
    P. Zioupos, A. J. Sedman and J. D. Currey, in “VIII Meeting of the European Society of Biomechanics”, Edited by P. Belloti and A. Cappozzo Rome (1992) p. 41.Google Scholar
  6. 6.
    C. L. Chow and T. J. Liu, int. J. Fract. 50 (1991) 79.CrossRefGoogle Scholar
  7. 7.
    D. Krajcinovic, Appl. Mech. Rev. 37 (1984) 1.Google Scholar
  8. 8.
    P. Ladeveze, in “Mechanics and Mechanisms of damage in composites and multi-materials”, ESIS11, edited by D. Baptiste (Mechanical Engineering Publications, London, 1991) p. 119.Google Scholar
  9. 9.
    M. H. J. W. Paas, P. J. G. Schreurs, C. W. J. Oomens and J. D. Janssen, ibid., p. 159.Google Scholar
  10. 10.
    C. A. Pattin, D. R. Carter and W. E. Caler, in “Proceedings of the 36th ORS Meeting”, New Orleans (1990) p. 90.Google Scholar
  11. 11.
    A. H. Burstein, D. T. Reilly and V. H. Frankel, in “Perspectives in biomedical engineering”, edited by R. M. Kenedi (Macmillan, London, 1973) p. 131.CrossRefGoogle Scholar
  12. 12.
    R. B. Martin and D. N. Burr, “Structure, function, and adaptation of compact bone” (Raven Press, New York, 1989).Google Scholar
  13. 13.
    H. M. Frost, Calc. Tiss. Int. 44 (1989) 367.CrossRefGoogle Scholar
  14. 14.
    P. Netz, K. Eriksson and L. Stromberg. Acta Orthop. Scand. 51 (1980) 223.CrossRefGoogle Scholar
  15. 15.
    A. J. Chamay, J. Biomech. 3 (1970) 263.CrossRefGoogle Scholar
  16. 16.
    P. Tschantz and E. Rutishauser, Ann. Anat. Path. 12 (1967) 223.Google Scholar
  17. 17.
    J. D. Currey and K. Brear, Calc. Tiss. Res. 15 (1974) 173CrossRefGoogle Scholar
  18. 18.
    A. J. Sedman, J. D. Currey and P. Zioupos, in “VIII Meeting of the European Society of Biomechanics”, Rome (1992) p. 40.Google Scholar
  19. 19.
    D. T. Reilly and A. H. Burstein, J. Bone Joint Surg. 56-A (1974) 1001.CrossRefGoogle Scholar
  20. 20.
    J. D. Currey, J. Biomech. 23 (1990) 837.CrossRefGoogle Scholar
  21. 21.
    J. D. Currey, A. J. Sedman and P. Zioupos, in “VIII Meeting of the European Society of Biomechanics”, Rome (1992) p. 50.Google Scholar
  22. 22.
    P. C. Cheng and R. G. Summers, in “Handbook of Biological Confocal Microscopy”, edited by J. B. Pawley (Plenum, New York, 1990) p. 179.CrossRefGoogle Scholar
  23. 23.
    R. T. Tsien and A. Waggoner, “, p. 169.CrossRefGoogle Scholar
  24. 24.
    H. Francillon-Vieillot, V. De Buffrénil, J. Castanet, J. Géraudie, F. J. Meunier, J. Y. Sire, L. Zylberberg and A. de Ricqlès, in “Skeletal Biomineralization: Patterns Processes and Evolutionary Trends”, Vol. 1, edited by J. G. Carter (Van Nostrand Reinhold, New York, 1990) p. 471.Google Scholar
  25. 25.
    E. Brouwer, Voeding 13 (1952) 55.Google Scholar
  26. 26.
    J. D. Currey, Q. J. Microsc. Sci. 101 (1960) 351.Google Scholar
  27. 27.
    A. Ascenzi, E. Bonucci and D. S. Bocciarelli, J. Ultrastruct. Res. 18 (1967) 605.CrossRefGoogle Scholar
  28. 28.
    P. Kucera, Folia Morph. 13 (1965) 71.Google Scholar
  29. 29.
    J. D. Currey and K. Brear, J. Mater. Sci. Mater. Med. 1 (1990) 14.CrossRefGoogle Scholar
  30. 30.
    J. D. Currey, Q. J. Microsc. Sci. 103 (1962) 111.Google Scholar
  31. 31.
    R. Lakes and S. Saha, Science 204 (1979) 501.CrossRefGoogle Scholar
  32. 32.
    M. B. Schaffler, D. B. Burr and R. G. Frederickson, Anat. Rec. 217 (1987) 223.CrossRefGoogle Scholar
  33. 33.
    D. T. Reilly and A. H. Burstein, J. Biomech. 8 (1975) 393.CrossRefGoogle Scholar
  34. 34.
    J. C. Behiri and W. Bonfield, ibid., 22 (1989) 863.CrossRefGoogle Scholar
  35. 35.
    W. Bonfield and P. K. Datta, J. Mater. Sci. 8 (1974) 1590.CrossRefGoogle Scholar
  36. 36.
    M. H. Pope and J. O. Outwater, J. Biomech. 5 (1972) 457.CrossRefGoogle Scholar
  37. 37.
    D. Margel-Robertson, D. Robertson and C. R. Bassett, ibid. 11 (1977) 359.CrossRefGoogle Scholar
  38. 38.
    K. Piekarski, J. Appl. Phys. 41 (1970) 215.CrossRefGoogle Scholar
  39. 39.
    W. Bonfield and P. K. Datta, J. Biomech. 9 (1976) 131.CrossRefGoogle Scholar
  40. 40.
    D. D. Moyle and A. J. Gavens, ibid. 19 (1986) 919.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Zioupos
    • 1
  • J. D. Currey
    • 1
  1. 1.Department of BiologyUniversity of YorkYorkUK

Personalised recommendations