Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 959–964 | Cite as

Microstructure of pressureless-sintered Al2O3-24 vol% ZrO2 composite studied by high-resolution electron microscopy

  • B. T. Lee
  • K. Hiraga
  • D. Shindo
  • A. Nishiyama
Papers

Abstract

The microstructure of an Al2O3-24 vol% ZrO2 composite prepared by pressureless-sintering was investigated by high-resolution electron microscopy. The composite was formed of homogeneously dispersed ZrO2 and Al2O3 grains with average sizes of 0.3 and 0.5 μm, respectively. Most ZrO2 grains had a monoclinic structure, but a few ZrO2 embedded in Al2O3 grains were a tetragonal structure. At interfaces between ZrO2 with a lamella-type twin structure and Al2O3, microcracks were observed, in addition to strain fields in the Al2O3 matrix. Complex twin structures accompanied by dislocations were observed in ZrO2 with a spherical shape. In in situ observations with electron-beam heating, it was found that a crack propagated along an Al2O3/ZrO2 interface and stopped at the place where a tetragonal ZrO2 had undergone a structural change to monoclinic ZrO2.

Keywords

Polymer Microstructure Microscopy Electron Microscopy Al2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Evens, N. Burlingame, M. Droy, and W. M. Kriven, Acta Metall. 29 (1981) 447.CrossRefGoogle Scholar
  2. 2.
    F. F. Lane, J. Mater. Sci. 17 (1982) 247.CrossRefGoogle Scholar
  3. 3.
    P. F. Becher, J. Am. Ceram. Soc. 64 (1981) 37.CrossRefGoogle Scholar
  4. 4.
    H. Saburo, Y. Masashiro, and S. Shigeyuki, ibid. 69 (1986) 169.CrossRefGoogle Scholar
  5. 5.
    N. Claussen, J. Steeb, and R. F. Pabst, J. Am. Ceram. Bull. 56 (1977) 559.Google Scholar
  6. 6.
    D. J. Green, J. Am. Ceram. Soc. 65 (1982) 610.CrossRefGoogle Scholar
  7. 7.
    S. R. Witek, and E. P. Butler, ibid. 69 (1986) 523.CrossRefGoogle Scholar
  8. 8.
    Q. L. Ge, T. C. Lei and Y. Zhou, Mater. Sci. Technol. 7 (1991) 490.CrossRefGoogle Scholar
  9. 9.
    E. Bischoff, and M. Rühle, J. Am. Ceram. Soc. 66 (1983) 123.CrossRefGoogle Scholar
  10. 10.
    S. P. Kraus-Lanteri, T. E. Mitchel, and R. Portier, ibid. 69 (1986) 256.CrossRefGoogle Scholar
  11. 11.
    L. Mazerolles, D. Michel, and R. Portier, ibid. 69 (1986) 252.CrossRefGoogle Scholar
  12. 12.
    S. L. Wen, L. T. Ma, J. K. Guo, and T. S. Yen, ibid. 69 (1986) 576.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • B. T. Lee
    • 1
  • K. Hiraga
    • 1
  • D. Shindo
    • 1
    • 2
  • A. Nishiyama
    • 3
  1. 1.Institute for Materials ResearchTohoku UniversitySendaiJapan
  2. 2.Institute for Advanced Materials ProcessingTohoku UniversitySendaiJapan
  3. 3.Central Research InstituteMitsubishi Material Co.SaitamaJapan

Personalised recommendations