Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 921–928 | Cite as

Toughness characterization of niobium-bearing HSLA steels

  • K. K. Ray
  • D. Chakraborty
  • S. Ray
Papers

Abstract

Estimates of toughness in terms of Charpy impact energy and the critical stress intensity factor, KICV using deeply chevron-notched specimens were made for two casts of niobium-bearing high-strength low-alloy (HSLA) steels. KICV determinations are carried out for the first time using both three- and four-point bend loading configurations for this material. Quantitative analyses of the material microstructures are made with respect to the amount of the phases, ferrite grain size, and the volume fraction, length, aspect ratio, and mean inter-spacings of the inclusions. A comparative study of impact and fracture toughness with regard to the microstructural parameters, indicates that the latter toughness characterization approach is far superior to the former. The compatibility of the estimated values of KICV using the two different loading configurations is discussed.

Keywords

Microstructure Ferrite Aspect Ratio Fracture Toughness Stress Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Woodhead and S. R. Keown, in “HSLA Steels-Metallurgy and Applications”, edited by J. M. Gray, T. Ko, Zhang Shouhua, Wu Baorong, Xie Xishan (ASM International, 1986) p. 15.Google Scholar
  2. 2.
    J. Crane (ed.), Proceedings of an International Symposium on HSLA steels, Microalloying 75, Washington DC, October 1–3, 1975 (John Crane, Union Carbide Corporation, Metals Division, Washington, DC 1977).Google Scholar
  3. 3.
    M. Korchynski (ed.), “Proceedings of an International Conference on HSLA Steels Technology and Applications”, Philadelphia, PA, October 1983, (Union Carbide Corporation, 1984).Google Scholar
  4. 4.
    J. M. Gray, T. Ko, Zhang Shouhua, Wu Baorong, Xie Xishan (eds), “Proceedings of an International Conference on HSLA Steels' 85”, Beijing, China, November 4–8, 1985 (ASM International, Beijing, 1986).Google Scholar
  5. 5.
    A. T. Davenport (ed.), Proceedings of a Symposium on Formable HSLA and Dual Phase Steels, Chicago, IL, October 26, 1977, (Metallurgical Society of AIME, Chicago, IL, 1979).Google Scholar
  6. 6.
    “Proceedings of an International Conference on HSLA Steels' 90”, Beijing, China, October 28–November 2, 1990 (TMS, USA).Google Scholar
  7. 7.
    American Society for Testing of Materials, “Standard Practice for R-Curve determination,” E561-86 (ASTM, Philadelphia, PA, 1986).Google Scholar
  8. 8.
    American Society for Testing of Materials, “Plane Strain Fracture Toughness for Metallic Materials,” E399-83 (ASTM, Philadelphia, PA, 1983).Google Scholar
  9. 9.
    American Society for Testing of Materials, “Standard Test Method for J IC A Measure of Fracture Toughness”, E813-87 (ASTM, Philadelphia, PA, 1987).Google Scholar
  10. 10.
    British Standards Institution, “Methods for Crack Opening Displacement (COD) Testing”, BS 5762 (1979).Google Scholar
  11. 11.
    L. M. Barker, Eng. Fract. Mech. 9 (1977) 361.CrossRefGoogle Scholar
  12. 12.
    J. C. Newman Jr, in “Chevron Notched Specimens: Testing and Stress Analysis,” ASTM STP 855, edited by J. H. Underwood, S. W. Freiman and F. I. Baratta (American Society for Testing and Materials, Philadelphia, PA, 1984) p. 5.CrossRefGoogle Scholar
  13. 13.
    K. K. Ray and S. Ray, in “Proceedings of International Symposium on Fatigue and Fracture in Steel and Concrete Structures”, Madras, December 1991, edited by A. G. Madhava Rao and T. V. S. R. Appa Rao (Oxford and IBH, New Delhi, 1991) p. 317.Google Scholar
  14. 14.
    J. Nakayama, Jpn J. App. Phys. 30 (1964) 422.CrossRefGoogle Scholar
  15. 15.
    H. G. Tattersall and G. Tappin, J. Mater. Sci. 1 (1966) 296.CrossRefGoogle Scholar
  16. 16.
    L. P. Pook, Int. J. Fract. Mech. 8 (1972) 103.CrossRefGoogle Scholar
  17. 17.
    J. I. Bluhm, Eng. Fract. Mech. 7 (1975) 593.CrossRefGoogle Scholar
  18. 18.
    L. M. Barker and F. I. Baratta, J. Test. Eval. 8 (1980) 97.CrossRefGoogle Scholar
  19. 19.
    J. L. Shannon Jr, R. T. Bubsey, W. S. Pierce and D. Munz, Int. J. Fract. 19 (1982) R55.CrossRefGoogle Scholar
  20. 20.
    J. F. Beech and A. R. Ingraffea, ibid 18 (1982) 217.Google Scholar
  21. 21.
    L. M. Barker, in “Fracture Mechanics of Ceramics”, Vol. 3, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) p. 483.Google Scholar
  22. 22.
    L. M. Barker and W. C. Leslie, in “Advances in Research on the Strength and Fracture of Materials”, Vol. 2A, edited by D. M. R. Taplin (Pergamon Press, New York, 1977) p. 98.Google Scholar
  23. 23.
    D. Munz, Eng. Fract. Mech. 15 (1981) 231.CrossRefGoogle Scholar
  24. 24.
    L. M. Barker, in “Chevron Notched Specimens: Testing and Stress Analysis”, ASTM STP 855, edited by J. H. Underwood, H. W. Freiman and F. I. Baratta (American Society for Testing and Materials, Philadelphia, PA, 1984) p. 117.CrossRefGoogle Scholar
  25. 25.
    J. Hong and P. Schwarzkopf, ibid.“, p. 297.CrossRefGoogle Scholar
  26. 26.
    Wang Chizhi, Yuan Maochan and Chen Tzeguang, ibid“, p. 193.CrossRefGoogle Scholar
  27. 27.
    K. R. Brown, ibid.“, p. 237.CrossRefGoogle Scholar
  28. 28.
    J. L. Shannon and D. G. Munz, ibid“, p. 270.CrossRefGoogle Scholar
  29. 29.
    J. Eschweiler, G. Marci and D. G. Munz, ibid.“, p. 255.CrossRefGoogle Scholar
  30. 30.
    A. Mendelson and L. J. Ghosn, ibid.“, p. 69.CrossRefGoogle Scholar
  31. 31.
    R. J. Sanford and R. Chona, ibid.“, p. 81.CrossRefGoogle Scholar
  32. 32.
    L. M. Barker, in “Short Rod and Short Bar Fracture Toughness Specimen Geometries and Test Methods for Metallic Materials”, ASTM STP 743, edited by R. Roberts (American Society for Testing and Materials, Philadelphia, PA, 1981) p. 456.Google Scholar
  33. 33.
    Idem, in “Fracture Mechanics Applied to Brittle Materials”, ASTM STP 678, edited by S. W. Freiman (American Society of Testing and Materials, Philadelphia, PA, 1979) p. 73.CrossRefGoogle Scholar
  34. 34.
    D. Munz, R. T. Bubsey and J. L. Shannon Jr, J. Test. Eval. 8 (1980) 103.CrossRefGoogle Scholar
  35. 35.
    Wu Shang-Xian, Eng. Fract. Mech. 19 (1984) 221.CrossRefGoogle Scholar
  36. 36.
    T. T. Shih, ibid. 14 (1981) 821.CrossRefGoogle Scholar
  37. 37.
    Idem, J. Test. Eval. 9 (1981) 50.CrossRefGoogle Scholar
  38. 38.
    Wu Shang-Xian, Int. J. Fract. 19 (1982) R27.CrossRefGoogle Scholar
  39. 39.
    L. Chuck, E. R. Fuller Jr and S. W. Freiman, in “Chevron Notched Specimens: Testing and Stress Analysis”, ASTM STP 855, edited by J. H. Underwood, S. W. Freiman and F. I. Baratta (American Society for Testing and Materials, Philadelphia, PA, 1984) p. 167.CrossRefGoogle Scholar
  40. 40.
    Wu Shang-Xian, ibid.“, p. 176.CrossRefGoogle Scholar
  41. 41.
    I. Bar-On, F. R. Tuler and I. Roman, ibid.“, p. 98.CrossRefGoogle Scholar
  42. 42.
    R. F. Krause Jr and E. R. Fuller Jr, ibid.“, p. 309.CrossRefGoogle Scholar
  43. 43.
    D. Munz, R. T. Bubsey and J. L. Shannon Jr, J. Am. Ceram. Soc. 63 (1980) 300.CrossRefGoogle Scholar
  44. 44.
    D. G. Munz, J. L. Shannon Jr and R. T. Bubsey, Int. J. Fract. 16 (1980) R137.CrossRefGoogle Scholar
  45. 45.
    P. A. Withey and P. Bowen, ibid. 46 (1990) R55.CrossRefGoogle Scholar
  46. 46.
    J. F. Knott, in “Fundamentals of Fracture Mechanics” (Butterworths, London, 1981) p. 136.Google Scholar
  47. 47.
    G. F. Vander Voort, in “Metallography Principles and Practice”, (McGraw Hill, New York, 1984) p. 410.Google Scholar
  48. 48.
    JIS G-0555-1977, “Microscopic Testing Method for the Nonmetallic Inclusions in Steels”, JIS Handbook, Ferrous Materials and Metallurgy (Japanese Standards Association, 1991).Google Scholar
  49. 49.
    American Society for Testing and Materials, “Standard Methods of Tension Testing of Metallic Materials”, E8-87 (ASTM, Philadelphia, PA, 1987).Google Scholar
  50. 50.
    American Society for Testing and Materials, “Standard Methods for Notched Bar Impact Testing of Metallic Materials”, E23-86 (ASTM Philadelphia, PA, 1986).Google Scholar
  51. 51.
    D. E. Diesburg, in “Toughness Characterisation and Specification for HSLA and Structural Steels”, edited by P. L. Margonon (American Institute of Mineral Engineers, New York, 1979) p. 19.Google Scholar
  52. 52.
    N. Lazaridis and P. L. Margonon Jr, in “Proceedings of Toughness Characterization and Specifications for HSLA and Structural Steels”, Atlanta, GA, March 6–10, 1977, edited by P. L. Margonon Jr (TMS-AIME, Atlanta, Georgia 1979) p. 112.Google Scholar
  53. 53.
    J. C. Radon and C. E. Turner, J. Iron Steel Inst. 204 (1966) 842.Google Scholar
  54. 54.
    R. H. Sailors and H. T. Corten, in “Fracture Toughness”, Proceedings of the 1971 National Symposium on Fracture Mechanics, Part II, ASTM STP 514 (American Society for Testing and Materials, Philadelphia, PA, 1972) p. 164.CrossRefGoogle Scholar
  55. 55.
    R. J. Klassen, M. N. Bassim and M. R. Bayoumi, Mater. Sci. Eng. 80 (1986) 25.CrossRefGoogle Scholar
  56. 56.
    G. T. Hahn and A. R. Rosenfield, Metall. Trans. 6A (1975) 653.CrossRefGoogle Scholar
  57. 57.
    W. M. Garrison Jr and N. R. Mody, ibid. 18A (1987) 1257.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. K. Ray
    • 1
  • D. Chakraborty
    • 1
  • S. Ray
    • 2
  1. 1.Department of Metallurgical EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Scientific Services DivisionThe Tata Iron and Steel Co, LtdJamshedpurIndia

Personalised recommendations