Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 877–882 | Cite as

Iron dispersed carbon composites formed from iron-polyvinylalcohol complexes

  • Y. Ohtsuka
  • T. Watanabe
  • Y. Nishiyama
  • M. Matsuda
  • H. Yokoi
Papers

Abstract

Iron-polyvinylalcohol (Fe-PVA) complexes have been pyrolysed at the temperatures up to 1000 K, and the iron-carbon composites formed have been characterized. The yield of carbon was much higher for the complexes than for PVA alone. The degree of carbon graphitization and the chemical form of iron species were dependent on the pyrolysis temperature. About 30 wt% fine particles of Fe3O4 or α-Fe were dispersed in the matrix of amorphous carbon at 800 or 900 K, respectively. At 1000 K, α-Fe was partly transformed to Fe3C, and the agglomeration of α-Fe was not so significant. At this temperature the carbon was graphitized, which resulted in a lowering of the surface area of the composite. It is suggested that the graphitization proceeds through the mechanism involving the formation and subsequent decomposition of Fe3C. Thus, the use of Fe-PVA complexes achieves a high yield of carbon and a high dispersion of a large amount of iron species throughout the carbon matrix.

Keywords

Iron Polymer Fe3O4 Pyrolysis Agglomeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Marsh, F. Dachille, J. Melvin and P. L. Walker Jr, Carbon 9 (1971) 159.CrossRefGoogle Scholar
  2. 2.
    S. Yajima and M. Omori, Chem. Lett. (1972) 843.Google Scholar
  3. 3.
    S. Hirano, T. Yogo, H. Suguki and S. Naka, J. Mater. Sci. 18 (1983) 2811.CrossRefGoogle Scholar
  4. 4.
    W. Airey, S. I. Ajiboye, P. A. Barnes, D. R. Brown, S. C. J. Buckley, E. A. Dawson, K. F. Gadd and G. Midgley, Catal. Today 7 (1990) 179.CrossRefGoogle Scholar
  5. 5.
    H. Yokoi, S. Kawata and M. Iwaizumi, J. Am. Chem. Soc. 108 (1986) 3358.CrossRefGoogle Scholar
  6. 6.
    S. I. Ajiboye and D. R. Brown, J. Chem. Soc. Faraday Trans. 86 (1990) 65.CrossRefGoogle Scholar
  7. 7.
    H. Shirai, Y. Nio, A. Kurose, S. Hayashi and N. Hojo, J. Chem. Soc. Jpn. Chem. Ind. Chem. (1978) 117.Google Scholar
  8. 8.
    W. Kuhn, I. Toth and H. J. Kuhn, Makromol. Chem. 60 (1963) 77.CrossRefGoogle Scholar
  9. 9.
    N. Hojo, H. Shirai and S. Hayashi, J. Polym. Sci. C 47 (1974) 299.Google Scholar
  10. 10.
    T. Yamaguchi and M. Amagasa, Jpn. J. Polym. Sci. Technol. 18 (1961) 653.Google Scholar
  11. 11.
    J. B. Gilbert, J. J. Kipling, B. Mcenaney and J. N. Sherwood, Polymer 3 (1962) 1.CrossRefGoogle Scholar
  12. 12.
    Y. Tsuchiya and K. Sumi, J. Polym. Sci. A-1 7 (1969) 3151.CrossRefGoogle Scholar
  13. 13.
    L. F. Albright and R. T. K. Baker (Eds), “Coke Formation on Metal Surfaces” (American Chemical Society, Washington, DC, 1982).Google Scholar
  14. 14.
    Y. Ohtsuka, K. Asami, T. Yamada and T. Homma, Energy Fuels, 6 (1992) 678.CrossRefGoogle Scholar
  15. 15.
    P. S. Cook and J. D. Cashion, Fuel 66 (1987) 661.CrossRefGoogle Scholar
  16. 16.
    H. Yamashita, Y. Ohtsuka, S. Yoshida and A. Tomita, Energy Fuels 3 (1989) 686.CrossRefGoogle Scholar
  17. 17.
    K. Ettre and P. F. Varadi, Anal. Chem. 35 (1963) 69.CrossRefGoogle Scholar
  18. 18.
    A. Oya and H. Marsh, J. Mater. Sci. 17 (1982) 309.CrossRefGoogle Scholar
  19. 19.
    Y. Ohtsuka, T. Watanabe and M. Matsuda, to be published.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Y. Ohtsuka
    • 1
  • T. Watanabe
    • 1
  • Y. Nishiyama
    • 1
  • M. Matsuda
    • 1
  • H. Yokoi
    • 2
  1. 1.Research Centre for Carbonaceous Resources, Institute for Chemical Reaction ScienceTohoku UniversitySendaiJapan
  2. 2.Faculty of EngineeringShizuoka UniversityHamamatsuJapan

Personalised recommendations