Advertisement

Journal of Materials Science

, Volume 29, Issue 4, pp 865–869 | Cite as

Dehydration products of gypsum: positron annihilation and dielectric measurements

  • T. Troev
  • M. Petkov
  • C. Alemany
  • J. Serna
Papers

Abstract

Bassanite (CaSO4·1/2 H2O) and anhydrite (CaSO4) are the low-temperature products of gypsum (CaSO4·2H2O) dehydration, which are obtained at about 373 and 433 K, respectively. These sulphates have non-centrosymmetric crystallographic point groups, but dielectric measurements do not reveal any piezo- or ferroelectric characteristic, and they practically behave like linear dielectrics. Positron lifetime spectra exhibit the existence of two different positron states, besides a free positron state. There is positronium formation in the three sulphates, and there is also evidence for the presence of a highly populated positron bound state which may be a complex state associated with positrons bound to SO 4 2− ions. Parameter S estimated from the Doppler curve and the average positron lifetime show unquestionably the sensitivity of positrons to the phase transitions gypsum-bassanite and bassanite-anhydrite.

Keywords

Gypsum Anhydrite CaSO4 Positron Annihilation Dielectric Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Lange (ed.), “Handbook of Chemistry” (McGraw-Hill, New York, 1967) p. 250.Google Scholar
  2. 2.
    “The Condensed Chemical Dictionary”, 8th Edn (Van Nostrand Reinhold, New York, 1971) p. 160.Google Scholar
  3. 3.
    L. A. Hardie, Amer. Mineralogist 52 (1967) 171.Google Scholar
  4. 4.
    P. Gay, Mineral. Mag. 35 (1965) 354.Google Scholar
  5. 5.
    Idem. ibid. 35 (1965) 347.Google Scholar
  6. 6.
    G. A. Lager, Th. Armbruster, F. J. Rotella, J. D. Jorgensen and D. G. Hinks, Amer. Mineralogist 69 (1984) 910.Google Scholar
  7. 7.
    J. D. C. McConell, D. M. Astil and P. L. Hall, Mineral. Mag. 51 (1987) 453.CrossRefGoogle Scholar
  8. 8.
    L. Bragg (ed.), “Crystal Structures of Minerals”, Vol. IV, “The Crystalline State” (Bell, 1965) p. 139.Google Scholar
  9. 9.
    R. W. G. Wyckoff, in “Crystal Structures”, 2nd Edn, Vol. 3 (John Wiley, New York, 1965) pp. 18 and 642.Google Scholar
  10. 10.
    B. F. Pedersen, Acta Crystallogr. B38 (1982) 1074.CrossRefGoogle Scholar
  11. 11.
    W. F. Cole and C. J. Lancucki, ibid. B30 (1974) 921.CrossRefGoogle Scholar
  12. 12.
    M. E. Lines and A. M. Glass, in “Principles and Applications of Ferroelectrics and Related Materials” edited by W. Marshall and D. H. Wilkinson (Clarendon, Oxford, 1977) p. 608.Google Scholar
  13. 13.
    P. Kirkegaard, N. J. Pedersen and M. Eldrup, “PATFIT-88”, Risø-M-2740 (1989).Google Scholar
  14. 14.
    J. Serna, Ferroelectrics 129 (1992) 157.CrossRefGoogle Scholar
  15. 15.
    J. Serna, unpublished work (1988–1990).Google Scholar
  16. 16.
    R. E. Green and R. E. Bell, Can. J. Phys. 35 (1957) 398.CrossRefGoogle Scholar
  17. 17.
    K. P. Singh and R. M. Singru, Phys. Lett. 33A (1970) 463.CrossRefGoogle Scholar
  18. 18.
    S. J. Tao, in Proceedings of 5th International Conference on Positron Annihilation, edited by R. R. Hasiguti and K. Fujiwara (Japan Institute of Metals, Aoba Aramaki, Sendai, 1979) p. 429.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • T. Troev
    • 1
  • M. Petkov
    • 1
  • C. Alemany
    • 2
  • J. Serna
    • 3
  1. 1.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Instituto de Ciencia de Materiales (Sede A)CSICMadridSpain
  3. 3.Departamento de Física de Materiales, Facultad de Ciencias FísicasUniversidad ComplutenseMadridSpain

Personalised recommendations