Journal of Materials Science

, Volume 29, Issue 4, pp 851–860 | Cite as

Elevated-temperature deformation properties of a HfC modified Ti-48Al-2Mn-2Nb matrix particulate composite

  • J. D. Whittenberger
  • S. C. Farmer
  • D. A. Bors
  • R. Ray
  • D. S. Lee


Rapid solidification techniques in combination with HIPing have been used to produce Ti-48Al-2Mn-2Nb and a Ti-48Al-2Mn-2Nb+15 wt% HfC composite. While the composite does contain several second phases within the γ + α2 matrix, none was identified to be HfC. The elevated-temperature properties were determined by constant velocity compression and constant load tensile testing in air between 1000 and 1173 K. Such testing indicated that the elevated temperature strengths of the HfC-modified aluminide was superior to those of the unreinforced matrix with the best 1100 K temperature slow strain rate properties for both materials being achieved after high-temperature annealing prior to testing. Examination of the microstructures after deformation in combination with the measured stress exponents and activation energies suggest that creep resistance of the HfC-modified form is due to solid-solution strengthening from carbon and hafnium rather than the presence of second phases.


Hafnium Particulate Composite Rapid Solidification Creep Resistance Stress Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Young-Won Kim: in “High Temperature Ordered Inter-metallic Alloys IV”, edited by L. A. Johnson, D. P. Pope and J. O. Steigler, Material Research Society Proceedings 213 (MRS, Pittsburgh, PA, 1991) pp. 777–94.Google Scholar
  2. 2.
    G. E. Allen, G. A. Champagne, H. L. Klein and L. F. Schulmeister, “Benefit of Advanced Materials in Future High Speed Civil Transport Propulsion Systems”, NASA CR 185246, July 1990.Google Scholar
  3. 3.
    J. B. Andrews and H. D. Kessler, J. Metals 8 (1956) 1348.Google Scholar
  4. 4.
    T. Tsujimoto and K. Hashimoto, in“High Temperature Ordered Intermetallic Alloys III”, edited by C. T. Lui, A. I. Taub, N. S. Stoloff and C. C. Koch, Material Research Society Proceedings 133 (MRS, Pittsburgh, PA, 1989) pp 391–96.Google Scholar
  5. 5.
    S. C. Jha and R. Ray, J. Mater. Sci. Lett. 7 (1988) 285.CrossRefGoogle Scholar
  6. 6.
    S. C. Jha, R. Ray and J. D. Whittenberger, Mater. Sci. Eng. A119 (1989) 103.CrossRefGoogle Scholar
  7. 7.
    J. Daniel Whittenberger, ibid. 57 (1983) 77.CrossRefGoogle Scholar
  8. 8.
    Idem, ibid. 73 (1985) 87.CrossRefGoogle Scholar
  9. 9.
    P. L. Martin, M. G. Mendiratta and H. A. Lipsitt, Met. Trans. 14A (1983) 2170.CrossRefGoogle Scholar
  10. 10.
    S. L. Kampe, J. D. Bryant and L. Christodoulou, ibid. 22A (1991) 447.CrossRefGoogle Scholar
  11. 11.
    T. Takahashi, H. Nagai and H. Oikawa, Mater. Sci. Eng. A114 (1989) 13.CrossRefGoogle Scholar
  12. 12.
    D. S. Shih and G. K. Scarr, in “High Temperature Ordered Intermetallic Alloys IV”, edited by L. A. Johnson, D. P. Pope and J. O. Steigler, Material Research Society Proceedings 213 (MRS, Pittsburgh, PA, 1991) pp. 727–32.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. D. Whittenberger
    • 1
  • S. C. Farmer
    • 1
  • D. A. Bors
    • 1
    • 2
  • R. Ray
    • 3
  • D. S. Lee
    • 4
  1. 1.NASA Lewis Research CenterClevelandUSA
  2. 2.Calspan CorporationNASA Lewis Research CenterClevelandUSA
  3. 3.Marko Materials Inc.North BillericaUSA
  4. 4.Materials LaboratoryWright Patterson Air Force BaseUSA

Personalised recommendations