Journal of Materials Science

, Volume 29, Issue 7, pp 1949–1957 | Cite as

Oxidation of aluminium nitride substrates

  • D. Robinson
  • R. Dieckmann


The growth of oxide films on two types of aluminium nitride substrates of different origin has been studied as a function of temperature. At a given set of oxidation reaction parameters, the oxide layers grown on substrates with a relatively large grain size and high concentrations of Y-Al-O-based liquid sintering aid phases (type I substrates) were observed to be thicker and more diffuse than those obtained on substrates with an average particle size of approximately 3 μm and low liquid sintering aid concentrations (type II substrates). The effects of the oxygen partial pressure variation on the oxide film growth have been investigated for the oxidation of type II AIN substrates. The kinetics of the growth of oxide films on such substrates were analysed and determined to fit best to a linear rate law. This type of rate law indicates that the rate-limiting step in the growth of oxide films on high-quality type II aluminium nitride substrates is an interface reaction-controlled process.


Oxide Film Average Particle Size Oxygen Partial Pressure Film Growth Linear Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Slack, R. A. Tanzill, R. O. Pohl and J. W. Vandersande, J. Phys. Chem. Solids 48 (1987) 641.CrossRefGoogle Scholar
  2. 2.
    G. A. Slack, ibid. 34 (1973) 321.CrossRefGoogle Scholar
  3. 3.
    R. W. Rice, J. H. Enloe, J. W. Lau, E. Y. Luh and L. E. Dolhert, Ceram. Bull. 71 (1992) 751.Google Scholar
  4. 4.
    N. Iwase, K. Anzai and K. Shinozaki, Solid State Technol. 29(10) (1986) 135.Google Scholar
  5. 5.
    L. M. Sheppard, Ceram. Bull. 69 (1990) 1801.Google Scholar
  6. 6.
    F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi and T. Takahashi, IEEE Trans. Components, Hybrids, Manuf. Technol. 13 (1990) 313.CrossRefGoogle Scholar
  7. 7.
    A. V. Virkar, T. B. Jackson and R. A. Cutler, J. Am. Ceram. Soc. 72 (1989) 2031.CrossRefGoogle Scholar
  8. 8.
    J. H. Harris, R. A. Youngman and R. G. Teller, J. Mater. Res. 5 (1990) 1763.CrossRefGoogle Scholar
  9. 9.
    M. Billy, J. Jarrige, J. P. Lecompte, J. Mexmain and S. Yefsah, Rev. Chim. Miner. 19 (1982) 673 (in French).Google Scholar
  10. 10.
    V. A. Lavrenko and A. F. Alexeev, Ceram. Int. 9 (3) (1983) 80.CrossRefGoogle Scholar
  11. 11.
    A. D. Katnani and K. I. Papathomas, J. Vac. Sci. Technol. A5 (1987) 1335.CrossRefGoogle Scholar
  12. 12.
    D. Suryanarayana, L. J. Matienzo, and D. F. Spencer, IEEE Trans. Components, Hybrids, Manuf. Technol. 12 (1989) 566.CrossRefGoogle Scholar
  13. 13.
    D. Suryanarayana, J. Am. Ceram. Soc. 73 (1990) 1108.CrossRefGoogle Scholar
  14. 14.
    G. Tammann, Z. Anorg. Allg. Chem. 111 (1920) 78 (in German).CrossRefGoogle Scholar
  15. 15.
    N. B. Pilling and R. E. Bedworth, J. Inst. Metals 29 (1923) 529.Google Scholar
  16. 16.
    H. Schmalzried, “Solid State Reactions,” 2nd Ed. (Verlag Chemie GmbH, Weinheim, 1981) pp. 171–8.Google Scholar
  17. 17.
    “Aluminium Nitride — The Choice for Thermal Management Applications”, Brochure A-14065A (The Carborundum Company, Electronics Materials Group, Substrates Division. Sanborn, NY, USA, 1990).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • D. Robinson
    • 1
  • R. Dieckmann
    • 1
  1. 1.Department of Materials Science and Engineering, Bard HallCornell UniversityIthacaUSA

Personalised recommendations