Journal of Materials Science

, Volume 29, Issue 7, pp 1940–1948 | Cite as

Sintering and microstructural development of ceria-gadolinia dispersed powders

  • P. Durán
  • C. Moure
  • J. R. Jurado


Well-dispersed ceria-gadolinia oxide powders were obtained from thoroughly isopropanol-washed coprecipitated oxalates, followed by calcination at 800 °C. The characteristics of the calcined powders and the microstructure of the green compacts were found to be of great importance in the sintering behaviour. Those green bodies in which some agglomerate survived after compaction reached a lower final density, while those having soft agglomerates were almost fully densified at a sintering temperature as low as 1400 °C. The densification process was studied by isothermal and constant heating rate dilatometry, and microstructural development at each stage in the processing was followed by SEM. By controlling the processing variables it was possible to obtain low-temperature near fully dense (better than 99%) and tough CeO2-Gd2O3 bodies with homogeneous microstructure.


Microstructure Compaction Calcination Oxalate Sinter Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kudo and H. Obayashi, J. Electrochem. Soc. 122 (1975) 142.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 123 (1976) 415.CrossRefGoogle Scholar
  3. 3.
    R. T. Dirstine, R. N. Blumenthal and T. F. Kuech, ibid. 126 (1979) 264.CrossRefGoogle Scholar
  4. 4.
    B. C. H. Steele, Solid State Ionics 12 (1984) 391.CrossRefGoogle Scholar
  5. 5.
    J. Riess, D. Braunshtein and D. S. Tanhauser, J. Am. Ceram. Soc. 64 (1981) 479.CrossRefGoogle Scholar
  6. 6.
    A. L. Dragoo and L. P. Domingues, ibid. 65 (1982)253.CrossRefGoogle Scholar
  7. 7.
    R. Gerhardt and A. S. Nowick, ibid. 69 (1986) 641.CrossRefGoogle Scholar
  8. 8.
    R. Gerhardt, A. S. Nowick, M. E. Mochel and J. Dumler, ibid. 69 (1986) 647.CrossRefGoogle Scholar
  9. 9.
    N. M. Beekmans and L. Heyne, Electrochim. Acta 21 (1976) 303.CrossRefGoogle Scholar
  10. 10.
    N. Bonanos, R. L. Slotwinski, B. C. H. Steele and E. P. Butler, J. Mater. Sci. Lett. 3 (1984) 245.CrossRefGoogle Scholar
  11. 11.
    I. Riess, Solid State Ionics 52 (1992) 127.CrossRefGoogle Scholar
  12. 12.
    K. Eguchi, T. Setoguchi, T. Inoue and H. Arai, ibid. 52 (1992) 165.CrossRefGoogle Scholar
  13. 13.
    H. Yananura, M. Tanada, H. Haneda, S. Shirasaki and Y. Moriyoshi, Ceram. Int. 11 (1985) 23.CrossRefGoogle Scholar
  14. 14.
    D. J. M. Bevanm, W. W. Barker and T. C. Parks, in “Proceedings of the 4th Conference on Rare-Earth Research”, edited by L. Eyring (Gordon and Breach, New York, 1965) p. 441.Google Scholar
  15. 15.
    J. D. McCullough and J. D. Britton, J. Am. Chem. Soc. 74 (1952) 5225.CrossRefGoogle Scholar
  16. 16.
    T. K. Gupta, F. F. Lange and J. H. Betchold, J. Mater. Sci. 13 (1978) 1464.CrossRefGoogle Scholar
  17. 17.
    F. F. Lange, ibid. 17 (1982) 240.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Durán
    • 1
  • C. Moure
    • 1
  • J. R. Jurado
    • 1
  1. 1.Electroceramics DepartmentInstituto de Cerámica y Vidrio (CSIC)MadridSpain

Personalised recommendations