Advertisement

Journal of Materials Science

, Volume 29, Issue 7, pp 1910–1914 | Cite as

Dielectric spectra of fresh cement paste below freezing point using an insulated electrode

  • S. S. Yoon
  • S. Y. Kim
  • H. C. Kim
Papers

Abstract

The spectra of complex dielectric constant were measured on a fresh cement paste with a water/cement ratio of 0.4 sandwiched between insulated electrodes in the frequency range 10 kHz–1 MHz and temperature range between 0 °C and — 30 °C. The bulk dielectric constant, 30–20, and conductivity, 6.14×10−5−0.65×10−5, in the temperature range −10 to −28 °C were much lower than those at room temperature, owing to the great decrease of ionic mobility caused by freezing the cement paste. The activation energy of 0.31 eV for the ionic conduction in fresh cement paste was obtained from an Arrhenius plot of conductivity at subzero temperature.

Keywords

Polymer Activation Energy Dielectric Constant Ionic Conduction Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. D. Tamas, Cem. Concr. Res. 12 (1982) 115.CrossRefGoogle Scholar
  2. 2.
    M. Perez-Pena, PhD thesis, Pennsylvania State University (1986).Google Scholar
  3. 3.
    F. D. Tamas, E. Farkas and M. Voros, Cem. Concr. Res. 17 (1987) 340.CrossRefGoogle Scholar
  4. 4.
    W. J. McCarter and A. B. Afshar, J. Mater. Sci. Lett. 3 (1984) 1083.CrossRefGoogle Scholar
  5. 5.
    A. B. Afshar and W. J. McCarter, ibid. 4 (1985) 851.CrossRefGoogle Scholar
  6. 6.
    W. J. McCarter and A. B. Afshar, J. Mater. Sci. 23 (1988) 488.CrossRefGoogle Scholar
  7. 7.
    W. J. McCarter, S. Garvin and N. Bouzid, J. Mater. Sci. Lett. 7 (1988) 1056.CrossRefGoogle Scholar
  8. 8.
    W. J. McCarter and R. Brousseau, Cem. Concr. Res. 20 (1990) 891.CrossRefGoogle Scholar
  9. 9.
    C. A. Scuderi, T. O. Mason and H. M. Jennings, J. Mater. Sci. 26 (1991) 349.CrossRefGoogle Scholar
  10. 10.
    I. D. Raistrick, J. R. MacDonald and D. R. Franceschetti, “Impedance Spectroscopy”, edited by J. R. Macdonald (Wiley, New York, 1987) pp. 71–5, 101–4.Google Scholar
  11. 11.
    J. E. B. Randels, Disc. Farad. Soc. 1 (1947) 11.CrossRefGoogle Scholar
  12. 12.
    J. R. MacDonald, J. Chem. Phys. 54 (1971) 2026.CrossRefGoogle Scholar
  13. 13.
    Idem, J. Electroanal. Chem. 53 (1974) 1.CrossRefGoogle Scholar
  14. 14.
    D. R. Franceschetti and J. R. MacDonald, ibid. 101 (1984) 307.CrossRefGoogle Scholar
  15. 15.
    D. R. Franceschetti, ibid. 178 (1984) 1.CrossRefGoogle Scholar
  16. 16.
    K. W. Wagner, Arch. Elecktrotech. 2 (1914) 378.Google Scholar
  17. 17.
    R. E. Beddoe and M. J. Setzer, Cem. Concr. Res. 20 (1990) 236.CrossRefGoogle Scholar
  18. 18.
    J. D. Birchall, J. D. Howard and J. E. Bailey, Proc. R. Soc. Lond. A 360 (1978) 445.CrossRefGoogle Scholar
  19. 19.
    G. H. Tattersall and P. F. G. Banfill, “The Rheology of Fresh Concrete” (1983) pp. 33–7.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. S. Yoon
    • 1
  • S. Y. Kim
    • 2
  • H. C. Kim
    • 2
  1. 1.Physics DepartmentAndong National UniversityKyungbukKorea
  2. 2.Physics DepartmentKorea Advanced Institute of Science and TechnologyTeajonKorea

Personalised recommendations