Journal of Materials Science

, Volume 29, Issue 7, pp 1895–1900 | Cite as

Coarsening of precipitates and dispersoids in aluminium alloy matrices: a consolidation of the available experimental data

  • L. M. Rylands
  • D. M. J. Wilkes
  • W. M. Rainforth
  • H. Jones


Experimental data on the coarsening of precipitates and dispersoids in aluminium-based matrices are reviewed. Available data are tabulated as K=(r3r 0 3 )/t where r0 is the initial particle radius and r is its value after time t at temperature T, and then plotted as log (KT) against 1/T for consolidation and assessment. The considerable body of data for δ′-A3Li in Li-containing alloys is well represented by K=(K0/T) exp (−Q/RT) with K0=(1.3 −0.5 +3.0 ) × 10−13m3Ks−1 and Q=115±4kJ mol−1. The relatively limited data for θ′ and θ″ in Cucontaining alloys are representable by the same relationship with K0∼4 × 10−8 and — 4 × 10−10 m3 Ks−1, respectively, and Q — 140 kJ mol−1. Available data for coarsening of L12 Al3(Zr, V) and related phases in Zr-containing alloys and of Al12Fe3Si and related phases in Al-Fe based alloys indicate (i) rates of coarsening at 375 to 475 °C (0.7 to 0.8Tm) five to eight orders of magnitude less than would be expected for δ′, θ′ and θ″ in this temperature range, and (ii) high activation energies of ∼300 and 180 kJ mol−1, respectively.


Polymer Aluminium Experimental Data Activation Energy High Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, 19 (1961) 35.CrossRefGoogle Scholar
  2. 2.
    C. Wagner, Z. Elektrochem, 65 (1961) 581.Google Scholar
  3. 3.
    M. Tamura, T. Mori and T. Nakamura, J. Jap. Inst. Met. 34 (1970) 919.CrossRefGoogle Scholar
  4. 4.
    B. Noble and G. E. Thompson, Met. Sci. J. 5 (1971) 114.CrossRefGoogle Scholar
  5. 5.
    A. J. Ardell, in “Phase Transformations 1987” edited by G. W. Loriner (The Institute of Metals, London, 1988) p. 485.Google Scholar
  6. 6.
    T. H. Sanders Jr and A. M. Gokhale, in “Diffusion Analysis and Applications”, edited by A. D. Rmig Jr and M. A. Dayananda (MMMS, Warrendale, Pennsylvania, 1989) p. 255.Google Scholar
  7. 7.
    J. D. Boyd and R. B. Nicholson, Acta Metall. 19 (1971) 1379.CrossRefGoogle Scholar
  8. 8.
    M. S. Zedalis and M. E. Fine, Met. Trans. 17A (1986) 2187.CrossRefGoogle Scholar
  9. 9.
    D. J. Skinner, R. L. Bye, D. Raybould and A. M. Brown, Scripta Met. Mater. 20 (1986) 867.CrossRefGoogle Scholar
  10. 10.
    L. Angers, Y. Chen, M. E. Fine, J. R. Weertman and M. S. Zedalis, in “Aluminium Alloys: Physical and Mechanical Properties”, Vol. 1, edited by E. A. Starke Jr and T. H. Sanders Jr (EMAS, Warlly UK, 1986) p. 321.Google Scholar
  11. 11.
    H. O. K. Kirchner, Met Trans 2 (1971) 2861.CrossRefGoogle Scholar
  12. 12.
    H. Kreye, Z. Metallkde, 61 (1970) 108.Google Scholar
  13. 13.
    E. Caponetti, E. M. D'Aguanno, R. Triolo and S. Spooner, Phil. Mag. B63 (1991) 1201.CrossRefGoogle Scholar
  14. 14.
    G. Cocco, L. Schiffini, S. Enco and A. Benedetti, Phys. Status Solidi (a) 69 (1982) 343.CrossRefGoogle Scholar
  15. 15.
    A. L. Berezina, L. N. Trofimova and K. V. Chuistov, Phys. Met. Metallogr. 55(3) (1983) 111.Google Scholar
  16. 16.
    J. H. Kulwicki and T. H. Sanders, Jr, in “Al-Li Alloys II”, edited by E. A. Starke Jr. and T. H. Sanders Jr. (TMS-AIME, Warrendale, 1984) p. 31.Google Scholar
  17. 17.
    S. F. Baumann and D. B. Williams, Scripta Metall. 18 (1984) 611.CrossRefGoogle Scholar
  18. 18.
    O. Jensrud and N. Ryum, Mater. Sci. Eng. 64 (1984) 229.CrossRefGoogle Scholar
  19. 19.
    P. L. Makin and B. Ralph, J. Mater. Sci. 19 (1984) 3835,CrossRefGoogle Scholar
  20. 20.
    M. Ahmad and T. Eriksson, Scripta Metall. 19 (1985) 457.CrossRefGoogle Scholar
  21. 21.
    B. P. Gu, G. L. Liedl, T. H. Sanders Jr and K. Welpmann, Mater. Sci. Eng. 76 (1985) 147.CrossRefGoogle Scholar
  22. 22.
    B. P. Gu, G. L. Liedl, J. H. Kulwicki and T. H. Sanders Jr, ibid. 76 (1985) 217.CrossRefGoogle Scholar
  23. 23.
    F. Livet and D. Bloch, Scripta Metall. 10 (1985) 1147.CrossRefGoogle Scholar
  24. 24.
    F. Broussard and M. Thomas, in “Al-Li Alloys III”, (Institute of Metals, 1986) p. 442.Google Scholar
  25. 25.
    B. P. Gu, K. Mahalingam, G. L. Liedl and T. H. Sanders Jr, ibid. p. 368.Google Scholar
  26. 26.
    J. C. Huang and A. J. Ardell, ibid. p. 455.Google Scholar
  27. 27.
    K. Mahalingam, B. P. Gu, G. L. Liedl and T. H. Sanders, Acta Metall. 35 (1987) 483.CrossRefGoogle Scholar
  28. 28.
    R. De Jesus and A. J. Ardell, in Proceedings of “Al-Li Alloys 5”, edited by T. H. Sanders Jr. and E. A. Starke Jr. (MCE, Birmingham, 1989), Vol II, p. 661.Google Scholar
  29. 29.
    W. S. Jung and J. K. Park,, Vol II p. 595.Google Scholar
  30. 30.
    R. Triolo, E. Caponetti, S. Spooner and F. Boschetti, Phil. Mag. A.60 (1989) 401.CrossRefGoogle Scholar
  31. 31.
    K.-D. Woo and H.-K. Cho, J. Korean Inst. Met. 26 (1988) 644.Google Scholar
  32. 32.
    B. J. Shaiu, H. T. Li, H. Y. Lee and H. Chen, Met. Trans. 21A (1990) 113.Google Scholar
  33. 33.
    S.-I. Fujikawa and M. Furushawa, in “Science and Engineering of Light Metals”, edited by K. Hirano, H. Oikawa and K. Ikeda (Japan Institute of Light Metals, Tokyo 1991) p. 965.Google Scholar
  34. 34.
    J. J. Hoyt and S. Spooner, Acta Met. Mater. 39(1991) 689.CrossRefGoogle Scholar
  35. 35.
    H. Y. Lee, S. S. Hsu and H. Chen, Scripta Met. Mater. 25 (1991) 1549.CrossRefGoogle Scholar
  36. 36.
    K. Mahalingam, V. Mahaden, G. L. Liedl and T. H. Sanders Jr ibid. 25 (1991) 2181.CrossRefGoogle Scholar
  37. 37.
    M. A. Floriano, G. Pipitone, E. Caponetti and R. Triolo, Phil. Mag. B. 66 (1992) 391.CrossRefGoogle Scholar
  38. 38.
    N. J. M. Hawkes and J. W. Martin, Metallurgia 75 (1967) No. 447, 45.Google Scholar
  39. 39.
    H. K. Cho, J. Korean Inst. Met. 16 (1978) 160.Google Scholar
  40. 40.
    P. Merle, F. Fouquet and J. Merlin, Scripta Metall. 13 (1979) 271.CrossRefGoogle Scholar
  41. 41.
    D. Janoff and M. E. Fine, Mater. Sci. Eng. 64 (1984) 67.CrossRefGoogle Scholar
  42. 42.
    V. D. Scott, S. Kerry and R. L. Trumper, Mater. Sci. Technol. 3 (1987) 827.CrossRefGoogle Scholar
  43. 43.
    T. Christman and S. Suresh, Acta Metall. 36 (1988) 1691.CrossRefGoogle Scholar
  44. 44.
    C. McL. Adam and D. C. Jenkinson, in “Metallurgy in Australasia”, edited by J. S. Smaill (Australian Institute of Metals, 1974) p. 58.Google Scholar
  45. 45.
    M. Ferrante and R. D. Doherty, Acta Metall. 27 (1979) 1603.CrossRefGoogle Scholar
  46. 46.
    H. Tashiro, S.-I. Fujikawa and K.-I. Hirano, J. Jap. Inst. Light Met. 29 (1979) 377.CrossRefGoogle Scholar
  47. 47.
    Y. Pontikakos and H. Jones, Met. Sci. 16 (1982) 27.CrossRefGoogle Scholar
  48. 48.
    S. I. Kwun and M. E. Fine, Met. Trans. 16A (1985) 709.CrossRefGoogle Scholar
  49. 49.
    Y. C. Chen, M. E. Fine, J. R. Weertman and R. E. Lewis, Scripta Metall. 21 (1987) 1003.CrossRefGoogle Scholar
  50. 50.
    S. Skolianos, T. Z. Kattamis, Y. R. Chung and H. D. Merchant, Met. Trans. 18A (1987) 1179CrossRefGoogle Scholar
  51. 51.
    M. Zedalis, D. Raybould, D. J. Skinner and S. K. Das, in “Processing of Structural Metals by Rapid Solidification”, edited by F. H. Froes and S. J. Savage, (ASM-I, Metals Park, Ohio, 1987) p. 347.Google Scholar
  52. 52.
    P. S. Gilman, S. K. Das, D. Raybould, M. S. Zedalis and J. M. Peltier, in Proceedings of 2nd International SAMPE Metals and Metals Processing Conference, Dayton, OH, 52. edited by F. H. Froes and R. A. Cull 1988, (SAMPE, Covina, CA, 1988) p. 91.Google Scholar
  53. 53.
    D. J. Skinner, in “Dispersion Strengthened Aluminium Alloys”, edited by Y. -W. Kim and W. M. Griffith (MMMS, Warrendale, Pennsylvania, 1988) p. 181.Google Scholar
  54. 54.
    Y. C. Chen, M. E. Fine and J. R. Weertman, Acta Met. Mater. 38 (1990) 771.CrossRefGoogle Scholar
  55. 55.
    J.-H. Shih, J.-Y. Wu and E. J. Lavernia, Scripta Met. Mater. 29 (1993) 31.CrossRefGoogle Scholar
  56. 56.
    C. J. Wen, W. Weppner, B. A. Boukamp and R. A. Huggins, Met. Trans. B. 11 (1980) 131.CrossRefGoogle Scholar
  57. 57.
    C. Moreau, A. Allouche and E. J. Knystautus, J. Appl. Phys. 58 (1985) 4582.CrossRefGoogle Scholar
  58. 58.
    M. Lieblich and M. Torralba, in Proceedings “Al-Li Alloys 5”, 58. edited by T. H. Sanders Jr. and E. A. Starke Jr. (MCE, Birmingham, 1989) Vol. II, p. 767.Google Scholar
  59. 59.
    D. L. Beke, I. Godeny, I. A. Szabo, G. Erdelyi and F. J. Kedves, Phil. Mag. A. 55 (1987) 425.CrossRefGoogle Scholar
  60. 60.
    K. Hirano and S. Fujikawa, J. Nucl. Mater. 69/70 (1978) 564.CrossRefGoogle Scholar
  61. 61.
    D. B. Williams and J. W. Edington, Met. Sci. 9 (1975) 529.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • L. M. Rylands
    • 1
  • D. M. J. Wilkes
    • 1
  • W. M. Rainforth
    • 1
  • H. Jones
  1. 1.Department of Engineering MaterialsUniversity of SheffieldSheffieldUK

Personalised recommendations