Journal of Materials Science

, Volume 29, Issue 7, pp 1873–1878 | Cite as

Synthesis and crystallization of yttrium-aluminium garnet and related compounds

  • N. J. Hess
  • G. D. Maupin
  • L. A. Chick
  • D. S. Sunberg
  • D. E. McCreedy
  • T. R. Armstrong


Amorphous oxide combustion products with compositions corresponding to Y4Al2O9, YAlO3, and Y3Al5O12 were synthesized by the glycine-nitrate process and heat-treated to induce crystallization. The crystalline structure of the resulting powders was determined by powder X-ray diffraction techniques. The phase stabilities of the crystalline phases were investigated as functions of the glycine-to-nitrate ratio, the yttrium-to-aluminium ratio, and the heat-treatment conditions. Heat treatment for short durations resulted in incompletely crystalline powders that consisted of a mixture of Y4Al2O9, YAlO3, and Y3Al5O12 phases, regardless of the chemical composition of the amorphous combustion product. However, heat treatment for longer durations or higher temperature generated both pure-phase, monoclinic Y4Al2O9 and Y3Al5O12 with the garnet structure. Prolonged heat treatment at high temperature failed to generate pure-phase orthorhombic YAlO3. Subsequent analysis revealed a sluggish, complex crystallization process involving the formation and decomposition of several phases.


Crystallization Heat Treatment Phase Stability Combustion Product Crystalline Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Cockayne, J. Less-Common Metals 114 (1985) 119.CrossRefGoogle Scholar
  2. 2.
    N. J. Hess and D. Schiferl, J. Appl. Phys. 71 (1992) 2082.CrossRefGoogle Scholar
  3. 3.
    N. J. Hess, G. J. Exarhos and S. M. Wood, Mater. Res. Soc. Symp. Proc. 244 (1992) 281.CrossRefGoogle Scholar
  4. 4.
    A. F. Wells, in “Structural inorganic chemistry”, (Clarendon Press, Oxford, 1975) p. 1095Google Scholar
  5. 5.
    H. S. Yoder and M. L. Keith, Amer. Mineral. 36 (1951) 519.Google Scholar
  6. 6.
    M. L. Keith and R. Roy, ibid. 39 (1954) 1.Google Scholar
  7. 7.
    S. Geller and E. A. Wood, Acta Crystallogr. 9 (1956) 536.CrossRefGoogle Scholar
  8. 8.
    F. Bertaut and J. Mareschal, C. R. Hebd. Seances Acd. Sci. 257 (1963) 867.Google Scholar
  9. 9.
    I. Warshaw and R. Roy, J. Amer. Ceram. Soc. 42 (1959) 434.CrossRefGoogle Scholar
  10. 10.
    J. S. Abell, I. R. Harris, B. Cockayne and B. Lent, J. Mater. Sci. 9 (1974) 527.CrossRefGoogle Scholar
  11. 11.
    N. A. Toropov, I. A. Bodnar, F. Ya Galadhov, Kh. S. Nikogosyan and N. V. Vinogradova, Izv. Akad. Nauk SSSR, Ser. Khim. 7 (1969) 1158.Google Scholar
  12. 12.
    M. Mizuno and T. Noguchi, Rep. Gov. Ind. Res. Inst. Nagoya 16 (1967) 171.Google Scholar
  13. 13.
    R. S. Roth, J. Res. N.B.S. 58 (1957) 75.Google Scholar
  14. 14.
    S. Naka, O. Takenaka, T. Sekiya and T. Noda, Kogyo Kagaku Zasshi 69 (1966) 1112.CrossRefGoogle Scholar
  15. 15.
    T. Noguchi and M. Mizuno, Rep. Gov. Ind. Res. Inst. Nagoya 70 (1967) 834.Google Scholar
  16. 16.
    S. J. Schneider, R. S. Roth and S. J. Waring, J. Res. N.B.S. 65A (1961) 345.CrossRefGoogle Scholar
  17. 17.
    V. B. Glushokova and L. P. Kachalova, Izv. Akad. Nauk SSSR, Neorg, Mater. 19 (1983) 95.Google Scholar
  18. 18.
    W. Class, J. Crystal Growth 3, 4 (1963) 241.Google Scholar
  19. 19.
    O. Yamaguchi, K. Takeoka and A. Hayashida, J. Mater. Sci. Lett. 10 (1990) 101.CrossRefGoogle Scholar
  20. 20.
    H. Haneda, in “Metal, inorganic and polymer materials” (Japan Foundation of Scientific Technology Information, Tokyo, 1987) p. 720.Google Scholar
  21. 21.
    C. D. Veitch, J. Mater. Sci. 26 (1991) 6527.CrossRefGoogle Scholar
  22. 22.
    J. J. Kingsley, K. Suresh and K. C. Patil, J. Solid State Chem. 87 (1990) 435.CrossRefGoogle Scholar
  23. 23.
    L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas and G. J. Exarhos, Mater. Lett. 10 (1990) 6.CrossRefGoogle Scholar
  24. 24.
    C. N. Reilley and R. W. Schmidt, Anal. Chem. 30 (1958) 947.CrossRefGoogle Scholar
  25. 25.
    L. A. Chick, G. D. Maupin, G. L. Graff, L. R. Pederson, D. E. McCready and J. L. Bates, Mater. Res. Soc. Symp. 249 (1992) 159.CrossRefGoogle Scholar
  26. 26.
    O. Yamaguchi, K. Takeoka, K. Hirota, H. Takano and A. Hayashida, J. Mater. Sci. 27 (1992) 1261.CrossRefGoogle Scholar
  27. 27.
    R. D. Shannon, Acta Cryst. A32 (1976) 751.CrossRefGoogle Scholar
  28. 28.
    L. Pauling, in “Nature of the chemical bond”, 3rd edn (Cornell University Press, Ithaca, New York, 1960) p. 644.Google Scholar
  29. 29.
    D. W. Hyndman, in “Petrology of igneous and metamorphic rocks” (McGraw-Hill, New York, 1972) p. 533.Google Scholar
  30. 30.
    A. C. Lasaga, in “Rate laws of chemical reactions”, Reviews in Mineralogy Vol. 8 (BookCrafters, Chelsea, Minnesota, 1981) p. 398.Google Scholar
  31. 31.
    A. C. Lasaga, in “The atomistic basis of kinetics: defects in minerals”, Reviews in Mineralogy Vol. 8 (BookCrafters, Chelsea, Minnesota, 1981) p. 398.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • N. J. Hess
    • 1
  • G. D. Maupin
    • 1
  • L. A. Chick
    • 1
  • D. S. Sunberg
    • 1
  • D. E. McCreedy
    • 1
  • T. R. Armstrong
    • 1
  1. 1.Pacific Northwest LaboratoryRichlandUSA

Personalised recommendations