Journal of Materials Science

, Volume 29, Issue 7, pp 1867–1872 | Cite as

Effect of particle-size distribution on sintering

Part I Modelling
  • J. -M. Ting
  • R. Y. Lin


A sintering model, taking into account the effect of particle-size distribution and the effect of grain growth, has been derived. The model predicts a dependence of densification on the width of the particle-size distribution. This dependence is strongly affected by the occurrence of grain growth. Prior to the occurrence of grain growth, the model predicts that the densification rate increases and then decreases as the particle-size distribution width of the original powder increases. After grain growth occurs, the densification rate decreases as the particle-size distribution width of the starting powder increases.


Polymer Rate Increase Material Processing Distribution Width Densification Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.-S. Yeh and M. D. Sacks, J. Am. Ceram. Soc. 71 (1988) C484.CrossRefGoogle Scholar
  2. 2.
    J. S. Chappel, T. A. Ring and J. D. Birchall, J. Appl. Phys. 60 (1986) 383.CrossRefGoogle Scholar
  3. 3.
    J. P. Smith and G. L. Messing, J. Am. Ceram. Soc. 67 (1984) 238.CrossRefGoogle Scholar
  4. 4.
    B. R. Patterson and L. A. Benson, Prog. Powder Metall. 39 (1983) 215.Google Scholar
  5. 5.
    M. F. Yan, R. M. Cannon, U. Chowdhry and H. K. Bowen, Bull. Am. Ceram. Soc. 56 (1977) 3.Google Scholar
  6. 6.
    W. H. Rhodes, J. Am. Ceram. Soc 64 (1981) 19.CrossRefGoogle Scholar
  7. 7.
    E. A. Barringer and H. K. Bowen, ibid. 65 (1982) C 199.CrossRefGoogle Scholar
  8. 8.
    M. F. Yan, R. M. Cannon Jr, H. K. Bowen and U. Chowdhry, Mater. Sci. Eng. 60 (1983) 275.CrossRefGoogle Scholar
  9. 9.
    M. D. Sacks and T.-Y. Tseng, J. Am. Ceram. Soc. 67 (1984) 532.CrossRefGoogle Scholar
  10. 10.
    E. Barringer, N. Jubb, B. Fegley, R. L. Pober and H. K. Bowen, in “Ultrastructure Processing of Ceramics, Glasses, and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley Interscience, New York, 1984) pp. 568–75.Google Scholar
  11. 11.
    R. L. Coble, J. Am. Ceram. Soc. 56 (1973) 461.CrossRefGoogle Scholar
  12. 12.
    G. L. Messing and G. Y. Onoda Jr, ibid. 68 (1981) 468.CrossRefGoogle Scholar
  13. 13.
    G. C. Kuzynski, Trans. AIME 185, (1949) 169.Google Scholar
  14. 14.
    N. Cabrera, ibid. 188 (1950) 667.Google Scholar
  15. 15.
    W. D. Kingery and M. Berg, J. Appl. Phys. 26 (1955) 1205.CrossRefGoogle Scholar
  16. 16.
    R. L. Coble, J. Am. Ceram. Soc. 41 (1958) 55.CrossRefGoogle Scholar
  17. 17.
    R. L. Coble, in “Kinetics of High-Temperature Processes”, edited by W. D. Kingery (Technology Press, MA and Wiley, New York, 1959) pp. 146–63.Google Scholar
  18. 18.
    G. C. Kuzynski, L. Abernethy and J. Allan, “, pp. 163–71.Google Scholar
  19. 19.
    D. L. Johnson and I. V. Culter, J. Am. Ceram. Soc. 46 (1963) 541.CrossRefGoogle Scholar
  20. 20.
    Idem, ibid. 46 (1963) 545.CrossRefGoogle Scholar
  21. 21.
    D. L. Johnson and T. M. Clarke, Acta Metall. 12 (1964) 1173.CrossRefGoogle Scholar
  22. 22.
    P. D. Wilcox and I. B. Culter, J. Am. Ceram. Soc. 49 (1966) 249.CrossRefGoogle Scholar
  23. 23.
    D. L. Johnson, J. Appl. Phys. 40 (1969) 192.CrossRefGoogle Scholar
  24. 24.
    W. S. Young and I. B. Culter, J. Am. Ceram. Soc. 53 (1970) 659.CrossRefGoogle Scholar
  25. 25.
    R. L. Coble, J. Appl. Phys. 41 (1970) 4798.CrossRefGoogle Scholar
  26. 26.
    D. L. Johnson and I. B. Culter, in “Phase Diagrams, Materials Science and Technology, II”, edited by A. M. Alper (Academic Press, New York, 1970) pp. 265–91.Google Scholar
  27. 27.
    W. R. Rao and I. B. Culter, J. Am. Ceram. Soc. 55 (1972) 170.CrossRefGoogle Scholar
  28. 28.
    R. L. Coble, J. Appl. Phys. 32 (1961) 787.CrossRefGoogle Scholar
  29. 29.
    Idem, ibid. 32 (1961) 793.CrossRefGoogle Scholar
  30. 30.
    P. J. Jorgensen, J. Am. Ceram. Soc. 48 (1965) 207.CrossRefGoogle Scholar
  31. 31.
    R. L. Coble, ibid. 36 (1965) 2327.Google Scholar
  32. 32.
    R. L. Coble and T. K. Gupta, in “Sintering and Related Phenomena”, edited by G. C. Kuzynski, N. A. Hooton and C. F. Gibbon (Gordon and Breach, New York, 1967) pp. 423–41.Google Scholar
  33. 33.
    A. K. Kakar, J. Am. Ceram. Soc. 51 (1968) 236.CrossRefGoogle Scholar
  34. 34.
    T. K. Gupta, ibid. 52 (1969) 166.CrossRefGoogle Scholar
  35. 35.
    D. L. Johnson, ibid. 53 (1970) 574.CrossRefGoogle Scholar
  36. 36.
    P. Kumar and D. L. Johnson, ibid. 57 (1974) 65.CrossRefGoogle Scholar
  37. 37.
    T. K. Gupta, ibid. 55 (1972) 276.CrossRefGoogle Scholar
  38. 38.
    J. H. Rosolowski and C. Greskovich, ibid. 58 (1975) 177.CrossRefGoogle Scholar
  39. 39.
    H. Suzuki, J. Appl. Phys. 49 (1978) 4238.CrossRefGoogle Scholar
  40. 40.
    M. Hiller, Acta Metall. 13 (1965) 227.CrossRefGoogle Scholar
  41. 41.
    K. S. Venkataraman and R. A. Dimilia, J. Am. Ceram. Soc. 72 (1989) 33.CrossRefGoogle Scholar
  42. 42.
    R. J. Brook and J. H. Rosoloski, in “Treatise on Solid State Sintering, 4”, edited by N. B. Nannay (Plenum, New York 1976) pp. 621–69.Google Scholar
  43. 43.
    W. S. Coblenz, J. M. Dynys, R. M. Cannon and R. L. Coble, in “Sintering Process”, edited by G. C. Kuzynski (Gordon and Breach, New York, 1979) pp. 141–57.Google Scholar
  44. 44.
    Jyh-Ming Ting, PhD thesis, Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, OH (1991).Google Scholar
  45. 45.
    W. D. Kingery, and B. Frankois, in “Sintering and Related Phenomena”, edited by G. C. Kuzynski, N. A. Hooten and C. F. Gibbon (Gordon and Breach, New York, 1967) pp. 471–98.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. -M. Ting
    • 1
  • R. Y. Lin
    • 1
  1. 1.Department of Material Sciences and EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations