Advertisement

Journal of Materials Science

, Volume 29, Issue 7, pp 1818–1824 | Cite as

Corrosion behaviour of TiN films obtained by plasma-assisted chemical vapour deposition

  • C. B. In
  • S. P. Kim
  • J. S. Chun
Papers

Abstract

Titanium nitride (TiN) coatings with a dense structure were prepared on high-speed steel by plasma-assisted chemical vapour deposition (PACVD). The electrochemical polarization measurement of TiN coating was compared with that of the uncoated substrate. It was found that the TiN coating had a higher corrosion potential, and a lower corrosion rate (current density), about three orders of magnitude less than for the steel substrate. The major corrosion mechanism of TiN was pitting corrosion through surface defects and/or open pores. The number and size of pits decreased with the chlorine content of the film. The TiN coating deposited by PACVD, regardless of the amount of residual chlorine, proved to be a good anti-corrosion coating on a steel substrate.

Keywords

Corrosion Rate Corrosion Behaviour Corrosion Potential Steel Substrate Titanium Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Massiani, A. Medjahed, P. Gravier, L. Argeme and L. Fedrizzi, Thin Solid Films 191 (1990) 305.CrossRefGoogle Scholar
  2. 2.
    A. Erdemir, W. B. Carter, R. F. Hochman and E. I. Meletis, Mater. Sci. Eng. 69 (1985) 89.CrossRefGoogle Scholar
  3. 3.
    T. A. Mäntylä, P. J. Helevirta, T. T. Lepistö and P. T. Siitonen, Thin Solid Films 126 (1985) 275.CrossRefGoogle Scholar
  4. 4.
    M. J. Park, A. Leyland and A. Matthews, Surf. Coat.Technol 43/44 (1990) 481.CrossRefGoogle Scholar
  5. 5.
    J. P. Coad, D. S. Rickerby and B. C. Oberlander, Mater. Sci. Eng. 174 (1985)93.CrossRefGoogle Scholar
  6. 6.
    A. J. Perry and E. Horvath, Thin Solid Films 62 (1979)133.CrossRefGoogle Scholar
  7. 7.
    D. G. Bhat, T. Cho and P. T. Woerner, J. Vac. Sci.Technol. A4 (1986) 2713.CrossRefGoogle Scholar
  8. 8.
    C. J. Kang, D. W. Kim, C. O. Park and J. S. Chun, Mater. Manuf. Processes 5 (1990) 63.CrossRefGoogle Scholar
  9. 9.
    B. E. Jacobson, R. Nimmagadda and R. F. Bunshar, Thin Solid Films 63 (1979) 333.CrossRefGoogle Scholar
  10. 10.
    R. Buhl, H. K. Pulker and E. Moll, ibid. 80 (1981) 265.CrossRefGoogle Scholar
  11. 11.
    Li Shizhi, Huang Wu, Yang Hongshun and Wang Zhongshu, Plasma Chem. Plasma Process 4 (1984) 147.CrossRefGoogle Scholar
  12. 12.
    T. Arai, H. Fujita and K. Oguri, Thin Solid Films 165 (1988) 139.CrossRefGoogle Scholar
  13. 13.
    N. Kikuchi, Y. Oosawa and A. Nishyama, inProceedings of 9th International Conference on CVD. Pittsburgh, May 1984, edited by McD. Robinson, C. H. J. Van den Brekel, G. W. Cullen and J. M. Blocher Jr. (Electrochemical Society, Pennington, 1984) p. 728.Google Scholar
  14. 14.
    Li Shizhi, Zhao Cheng, Xu Xiang, Shi Yulong, Yang Hongshun, Surf. Coat. Technol. 43/44 (1990) 1007.CrossRefGoogle Scholar
  15. 15.
    D. H. Jang, S. S. Chun and J. G. Kim, Thin Solid Films 169 (1989) 57.CrossRefGoogle Scholar
  16. 16.
    S. B. Kim, S. K. Choi, J. S. Chun and K. H. Kim, J. Vac. Sci. Technol. A9 (1991) 2174.CrossRefGoogle Scholar
  17. 17.
    D. H. Jang and J. S. Chun, ibid. A7 (1989) 31.CrossRefGoogle Scholar
  18. 18.
    S. Hofmann, ibid. A4 (1986) 2789.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. B. In
    • 1
  • S. P. Kim
    • 1
  • J. S. Chun
    • 1
  1. 1.Department of Electronic Materials EngineeringKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations