Journal of Materials Science

, Volume 29, Issue 7, pp 1786–1794 | Cite as

Microscopy investigation on fracture mechanisms in hot-isostatically pressed Si3N4/SiC-platelet composites

  • G. Pezzotti
  • B. -T. Lee
  • K. Hiraga
  • T. Nishida


Fracture mechanisms in hot-isostatically pressed (HIP) Si3N4/SiC-platelet composites have been investigated by transmission electron (TEM) and scanning electron (SEM) microscopy followed by profilometric analyses. Two composites containing 25 vol% platelets were compared. They were fabricated from the same raw materials and by the same procedure except for the cooling rate from the sintering temperature. The study consists of experimental observations as well as measurements of fractographic parameters which dictates the level of toughening, such as the percentage of intergranular fracture, lengths and angles associated with the debonding process at the matrix/platelet interface. The presence of microcracking in the neighbourhood of the main crack, a higher fraction of intergranular fracture, as well as substantial debonding at the nitride/carbide interface up to high orientation angles were found in the composite cooled at low rates (∼ 100°Ch−1) which, despite the unchanged microstructure, was substantially tougher than that cooled at ∼ 650°Ch−1. These trends were not observed in the composite subjected to fast cooling. The stronger interfacial bonding found after fast cooling under high pressure was attributed to an apparent compressive stress remaining stored at the grain boundary, rather than to a weakening of the platelets or the matrix grains. Calculations based on the mechanics analysis of crack/interface interactions and on quantitative profilometric data, indicated a difference of about one order of magnitude in the apparent interface fracture energy of the two composites.


Fracture Mechanism Compressive Stress Sinter Temperature Fracture Energy Mechanic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Rühle, B. J. Dalgleish and A. G. Evans, Scripta Metall. 21 (1987) 681.CrossRefGoogle Scholar
  2. 2.
    G. H. Campbell, M. Ruhle, B. J. Dalgleish and A. G. Evans, J. Am. Ceram. Soc. 73 (1990) 521.CrossRefGoogle Scholar
  3. 3.
    G. Pezzotti, K. Noda, Y. Okamoto and T. Nishida, J. Mater. Sci., 28 (1993) 3080.CrossRefGoogle Scholar
  4. 4.
    G. Pezzotti, J. Am. Ceram. Soc., 76 (1993) 3323.CrossRefGoogle Scholar
  5. 5.
    G. Pezzotti, B.-T. Lee, K. Hiraga and T. Nishida, J. Mater. Sci., 28 (1993) 4187.Google Scholar
  6. 6.
    G. Pezzotti, Acta Metall. Mater., 41 (1993) 1825.CrossRefGoogle Scholar
  7. 7.
    I. Tanaka, G. Pezzotti, T. Okamoto, Y. Miyamoto and M. Koizumi, J. Am. Ceram. Soc. 72 (1989) 1656.CrossRefGoogle Scholar
  8. 8.
    G. Pezzotti, I. Tanaka and T. Nishida, Philos. Mag. Lett., 67 (1993) 95.CrossRefGoogle Scholar
  9. 9.
    M. Rühle, A. G. Evans, R. M. McMeeking and P. G. Charalambides, Acta Metall. 35 (1987) 2701.CrossRefGoogle Scholar
  10. 10.
    P. G. Charalambides and A. G. Evans, J. Am. Ceram. Soc. 72 (1989) 746.CrossRefGoogle Scholar
  11. 11.
    A. Krell, J. Woltersdorf, E. Pippel and D. Schulze, Philos. Mag. 51 (1985) 765.CrossRefGoogle Scholar
  12. 12.
    G. Pezzotti, I. Tanaka and T. Okamoto, J. Am. Ceram. Soc. 74 (1991) 326.CrossRefGoogle Scholar
  13. 13.
    S. Sakka, T. Sakaino, K. Takahashi and N. Soga in “Glass Handbook” (Asakura Shoten, Tokyo, 1980) p. 657.Google Scholar
  14. 14.
    A. G. Evans, Acta Metall. 26 (1978) 1845.CrossRefGoogle Scholar
  15. 15.
    T. Mura and P. C. Cheng, J. Appl. Mech. 44 (1977) 591.CrossRefGoogle Scholar
  16. 16.
    T. Mura, “Micromechanics of Defects in Solids” (Martinus Nijhoff, The Hague, 1982) p. 66.CrossRefGoogle Scholar
  17. 17.
    Z. Li and R. C. Bradt, in “Whisker-and Fiber-toughened Ceramics” (ASM International, USA, 1988) p. 289.Google Scholar
  18. 18.
    T. S. Cook and F. Erdogan, Int. J. Eng. Sci. 10 (1972) 677.CrossRefGoogle Scholar
  19. 19.
    M. C. Lu and F. Erdogan, Eng. Fract. Mech. 18 (1983) 491.CrossRefGoogle Scholar
  20. 20.
    J. W. Hutchinson, M. E. Mear and J. R. Rice, J. Appl. Mech. 54 (1987) 828.CrossRefGoogle Scholar
  21. 21.
    M. Y. He and J. W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053.CrossRefGoogle Scholar
  22. 22.
    Idem., J. Appl. Mech. 56 (1989) 270.CrossRefGoogle Scholar
  23. 23.
    A. K. Bhattacharya, J. J. Petrovich and S. C. Danforth, J. Am. Ceram. Soc. 75 (1992) 413.CrossRefGoogle Scholar
  24. 24.
    A. J. G. Op Het Veld and J. D. B. Veldkamp, Fiber Sci. Technol. 2 (1970) 269.CrossRefGoogle Scholar
  25. 25.
    A. Ghosh, M. G. Jenkins, K. W. White, A. S. Kobayashi and R. C. Bradt, in “Proceedings of the 3rd International Symposium on Ceramic Materials and Components for Engines” (American Ceramic Society, Las Vegas, 1988) p. 592.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • G. Pezzotti
    • 1
  • B. -T. Lee
    • 2
  • K. Hiraga
    • 2
  • T. Nishida
    • 3
  1. 1.The Institute of Scientific and Industrial ResearchISIR, Osaka UniversityOsakaJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan
  3. 3.Faculty of Polytechnique Science, Department of Materials EngineeringKyoto Institute of TechnologyKyotoJapan

Personalised recommendations