Journal of Materials Science

, Volume 29, Issue 7, pp 1781–1785 | Cite as

Electrical transport in amorphous Se1−xSbx thin films

  • P. Sikka
  • K. Kumar


Amorphous Se1−xSbx (x=0.1, 0.15 and 0.2) films of different thicknesses were prepared by the electron gun evaporation technique. Their structure was studied using reflection or transmission electron diffraction patterns. The d.c. electrical conductivity, thermoelectric power and magnetoresistance measurements, were made in the temperature range 80–300 K. These measurements confirm intrinsic conduction in the entire range of investigation, and were found to be independent of the film thickness. The effect of antimony impurity on electrical transport properties of selenium is understood in terms of the reduction of the Se8 ring population.


Electrical Conductivity Selenium Transport Property Electron Diffraction Antimony 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Twadell, W. C. Lacowrse and J. D. Machenzie, J. Non-Cryst. Solids 8–10 (1972) 831.CrossRefGoogle Scholar
  2. 2.
    J. M. Honig and CNR Rao, “Preparation and Characterization of Materials” (Academic Press, New York, 1981).Google Scholar
  3. 3.
    David Adlar, “Physical Properties of Amorphous Materials” (Plenum Press, New York, 1985).CrossRefGoogle Scholar
  4. 4.
    Hemant Kumar, Manoj Arora, Pawan Sikka, Ashtosh Ganjoo and P. C. Mathur, Semi. Sci. Technol. 4 (1989) 1135.CrossRefGoogle Scholar
  5. 5.
    Pawan Sikka, Eng. Mater. 13–15 (1987) 523.Google Scholar
  6. 6.
    G. Lucovsky, Mater. Res. Bull. 4 (1969) 505.CrossRefGoogle Scholar
  7. 7.
    D. Emin, C. H. Seager and R. K. Quinn, Phys. Rev. Lett. 28 (1972) 813.CrossRefGoogle Scholar
  8. 8.
    P. Nagels, R. Callaerts and M. Deneyer, in “Proceedings of the 5th International Conference on Amorphous and Liquid Semiconductors”, edited by J. Stuke and W. Brenig (Taylor and Frances, London, 1974) p. 867.Google Scholar
  9. 9.
    N. F. Mott and E. A. Davis, “Electronic Processes in Non-crystalline Materials” (Oxford University Press, 1979).Google Scholar
  10. 10.
    Y. Toyozawa, J. Phys. Soc. Jpn 17 (1962) 986.CrossRefGoogle Scholar
  11. 11.
    B. Movaghar and L. Schweitzer, J. Phys. CII (1978) 125.Google Scholar
  12. 12.
    R. M. Mehra, Radhey Shyam and P. C. Mathur, Thin Solid Films 100 (1983) 81.CrossRefGoogle Scholar
  13. 13.
    A. Kurobe and H. Kamimura, J. Non-Cryst. Solids 59/60(1983) 44.CrossRefGoogle Scholar
  14. 14.
    F. T. Hedgcock and T. W. Raudorf, Solid State Commun. 8 (1970) 1819.CrossRefGoogle Scholar
  15. 15.
    G. P. Carver and R. S. Allgain, J. Non-Cryst. Solids 8–10 (1972) 347.CrossRefGoogle Scholar
  16. 16.
    R. M. Mehra, S. C. Agarwal, Saurabh Rani, Hemant Kumar and P. C. Mathur, ibid. 69 (1985) 261.CrossRefGoogle Scholar
  17. 17.
    Pawan Sikka, in “Proceedings of the International Conference on Physics and Technology of Semiconductor Devices and Integrated Circuits”, edited by B. S. V. Gopalan and J. Majhi (IIT, Madras, India); SPIE Vol. 1523 (Tata McGraw Hill, New Delhi, 1992) pp. 419–28.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Sikka
    • 1
  • K. Kumar
    • 1
  1. 1.Department of Science and TechnologyNew DelhiIndia

Personalised recommendations