Journal of Materials Science

, Volume 29, Issue 7, pp 1773–1780 | Cite as

Effects of crystallization rates on interface layer thickness of epitaxial HDPE on oriented iPP

  • Shouke Yan
  • Jian Lin
  • Decai Yang
  • J. Petermann


The effect of crystallization rate on the epitaxial interface layer thickness of high-density polyethylene (HDPE) in the epitaxial system with oriented isotactic polypropylene (iPP) has been investigated by electron microscopy. The results of bright-field electron microscopy and electron diffraction indicate that the epitaxial growth of HDPE on iPP takes place only on the interface between them. The thickness of the epitaxial layer of HDPE is markedly affected by the crystallization rate of HDPE. The critical layer thickness of epitaxial HDPE is about 100 nm under slow crystallization conditions, e.g. isothermal crystallization at 124°C. When the crystallization rate is higher (quenching into air at room temperature), the epitaxial layer thickness of HDPE increases up to 250 nm.


Crystallization Electron Diffraction Epitaxial Layer HDPE Epitaxial Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Gohil, J. Polym. Sci., Polym. Phys. Ed. 29 (1985) 1713.CrossRefGoogle Scholar
  2. 2.
    A. Jaballah, V. Rieck and J. Petermann, J. Mater. Sci. 25 (1990) 3105.CrossRefGoogle Scholar
  3. 3.
    I. Hwa Lee and J. M. Schultz, ibid. 23 (1988) 4237.CrossRefGoogle Scholar
  4. 4.
    B. Lotz and J. C. Wittmann, Makromol. Chem. 185 (1985) 2043.CrossRefGoogle Scholar
  5. 5.
    Idem and J. C. Wittmann, J. Polym. Sci. Polym. Phys. Ed. 24 (1986) 1559.CrossRefGoogle Scholar
  6. 6.
    G. Broza, V. Rieck, A. Kawaguchi and J. Petermann, ibid. 23 (1985) 2623.CrossRefGoogle Scholar
  7. 7.
    J. Petermann and Y. Xu, J. Mater. Sci. 26 (1991) 1211.CrossRefGoogle Scholar
  8. 8.
    Y. Shen, D. Yang and Z. Feng, ibid. 26 (1991) 1941.CrossRefGoogle Scholar
  9. 9.
    B. Gross and J. Petermann, ibid. 19 (1984) 105.CrossRefGoogle Scholar
  10. 10.
    J. Petermann, G. Broza, V. Rieck and A. Kawaguchi, ibid. 22 (1987) 1477.CrossRefGoogle Scholar
  11. 11.
    J. C. Wittmann and B. Lotz, J. Polym. Sci. Polym. Phys. Ed. 23 (1985) 205.CrossRefGoogle Scholar
  12. 12.
    J. Petermann and Y. Xu, Polym. Commun. 31 (1990) 428.Google Scholar
  13. 13.
    J. Petermann, Y. Xu and D. Yang, ibid. 33 (1992) 1096.CrossRefGoogle Scholar
  14. 14.
    J. Petermann and R. M. Gohil, J. Mater. Sci. 14 (1979) 2260.CrossRefGoogle Scholar
  15. 15.
    D. Yang and E. L. Thomas, ibid. 19 (1984) 2098.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Shouke Yan
    • 1
  • Jian Lin
    • 1
  • Decai Yang
    • 1
  • J. Petermann
    • 2
  1. 1.Polymer Physics LaboratoryChangchun Institute of Applied ChemistryChangchunPeople’s Republic of China
  2. 2.Department of Chemical EngineeringDortmund UniversityDortmundGermany

Personalised recommendations